
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN RECOVERY AND IMPLEMENTATION OF THE
AYK-14 VHSIC PROCESSOR MODULE ADAPTER WITH
FIELD PROGRAMMABLE GATE ARRAY TECHNOLOGY

by

Bryan J. Fetter

December 2002
 Thesis Advisor: Russell W. Duren
 Second Reader: Hersch Loomis

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Design Recoverey and Implementation of the AYK-14 VHSIC Processor Module
Adapter with Field Programmable Gate Array Technology
6. AUTHOR(S) Fetter, Bryan James

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The rapid pace of change in the electronics industry and the significant reduction in military budgets over the past

decade has forced many military aircraft to extend their service lifetimes. This has led to aircraft with outdated avionics
systems being required to accomplish new and more complex missions. This thesis examines the process of reengineering an
outdated avionics system to economically upgrade its capabilities through the FPGA implementation of a binary compatible
replacement. The system targeted is the AN/AYK-14(V) Navy Standard Airborne Computer, specifically the XN-8 chassis
used as the mission computer onboard the F/A-18 C/D aircraft. This thesis is also intended to provide a resource document on
the AYK-14 for a study being conducted by the Naval Air Systems Command (NAVAIR) Advanced Weapons Laboratory
(AWL). The design of the Input / Output module of the VHSIC Processor Module was recovered through research of
documentation and hardware testing. The recovered design was modeled using VHDL, synthesized and implemented using
computer-aided (CAD) design tools. This thesis shows that replacement of legacy systems through use of FPGA technology is
a viable option, however, expansion of the design is recommended to create a truly binary compatible replacement.

15. NUMBER OF
PAGES

218

14. SUBJECT TERMS
Obsolescence, Legacy, FPGA, VHDL,VHSIC, Xilinx, SDRAM, AYK-14, Mil-Std-1553, State
Machine, AVNET, Bus Controller, Data Bus, Software Interrupts, Reengineering, Design Recovery

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited.

DESIGN RECOVERY AND IMPLEMENTATION OF THE AYK-14 VHSIC
PROCESSOR MODULE ADAPTER WITH FIELD PROGRAMMABLE GATE

ARRAY TECHNOLOGY

Bryan J. Fetter
Lieutenant, United States Navy

B.S. Aerospace Engineering, United States Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
DECEMBER 2002

Author: Bryan J. Fetter

Approved by: Russell W. Duren

Thesis Advisor

Hersch Loomis
Second Reader

Max Platzer
Chairman, Department of Aeronautics and Astronautics

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The rapid pace of change in the electronics industry and the significant reduction

in military budgets over the past decade has forced many military aircraft to extend their

service lifetimes. This has led to aircraft with outdated avionics systems being required to

accomplish new and more complex missions. This thesis examines the process of

reengineering an outdated avionics system to economically upgrade its capabilities

through the FPGA implementation of a binary compatible replacement. The system

targeted is the AN/AYK-14(V) Navy Standard Airborne Computer, specifically the XN-8

chassis used as the mission computer onboard the F/A-18 C/D aircraft. This thesis is also

intended to provide a resource document on the AYK-14 for a study being conducted by

the Naval Air Systems Command (NAVAIR) Advanced Weapons Laboratory (AWL).

The design of the Input / Output module of the VHSIC Processor Module was recovered

through research of documentation and hardware testing. The recovered design was

modeled using VHDL, synthesized and implemented using computer-aided design

(CAD) tools. This thesis shows that replacement of legacy systems through use of FPGA

technology is a viable option, however, expansion of the design is recommended to create

a truly binary compatible replacement.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THE LEGACY AVIONICS ISSUE ...1
B. POTENTIAL SOLUTIONS TO THE LEGACY PROBLEM2
C. REENGINEERING ...3
D. PURPOSE OF STUDY..4

II. DESIGN RECOVERY ..7
A. OVERVIEW OF REENGINEERING PROCESS7
B. OVERVIEW OF THE AYK-14..8

1. History of the AYK-14...8
2. Processor Subsystem..8
3. Memory Subsystem..9
4. Input / Output Subsystem ...9
5. Power Subsystem ...9
6. Chassis Subsystem ...9

C. AYK-14 CONFIGURATION ON THE F-18C/D10
D. VPM PROCESSOR...12
E. ADAPTER ..14
F. EXTERNAL BUS OPERATION ...16

1. Standalone Mode MBUS Operation...16
2. Standalone XBUS Operation ..20

G. EVENT SYSTEM ..24
1. Polled Event System...25

a. 1st State: ESTATE = 01...26
b. 2nd State: ESTATE = 10..27
c. 3rd State: ESTATE = 11..29

2. Direct Events ..30
H. INPUT / OUTPUT MODULE OPERATION ...30

1. I/O Channel Software ..30
2. I/O Channel Control Memory ..31
3. I/O Channel Chain Programs...32
4. I/O Channel Software Interrupts ...33
5. I/O Channel Events..34
6. I/O Channel Basic Operation..35

I. DISCRETE AND SERIAL MODULE ..37
1. DSM Personalities and Modes ..37
2. Smart I/O Operation..38

J. COMPUTER CONTROL UNIT..39

III. DESIGN IMPLEMENTATION ..41
A. FORWARD ENGINEERING PROCESS ...41

1. Field Programmable Gate Array ...41

 vii

2. VHSIC Hardware Design Language (VHDL)...42
3. FPGA Design Tools..43
4. Finite State Machine Design ...45
5. Modular Approach to Overall Design..47

B. TARGET FOR DESIGN IMPLMENTATION ..47
C. COMPONENT DESIGN DESCRIPTION..49

1. SDRAM Controller..50
2. Memory Arbitrator..53
3. MBUS Controller ...55
4. XBUS Controller..58
5. Event Bus Controller ...60
6. Top Level Design Interface ...61

IV. CONCLUSIONS..63

APPENDIX A: DOCUMENTATION LIST FOR THE AYK-14......................................65

APPENDIX B: DIRECT AND POLLED EVENTS ...67

APPENDIX C: I/O INSTRUCTIONS ...69

APPENDIX D: XBUS COMMAND WORDS...73

APPENDIX E: VHDL SOURCE CODE ...101

LIST OF REFERENCES..199

INITIAL DISTRIBUTION LIST ...201

 viii

LIST OF FIGURES

Figure 1. Engineering Processes ...7
Figure 2. AYK-14 Subsystems..10
Figure 3. AYK-14 Chassis 8 – CP2360 ..11
Figure 4. Six 1553 Data Bus Channels on F/A-18 C/D ..12
Figure 5. VPM Block Diagram ...13
Figure 6. Address Generation ...15
Figure 7. Absolute Address Assignment...16
Figure 8. MBUS Interface Signals ..18
Figure 9. MBUS Standalone Operations...19
Figure 10. XBUS Interface Signals...21
Figure 11. XBUS Command Word Format...22
Figure 12. XBUS Timing Diagrams..23
Figure 13. Software Execution Interrupts ...25
Figure 14. Event Monitor Bus Definition ...27
Figure 15. Event Bus Response Matrix...28
Figure 16. Event Monitor State Sequence...29
Figure 17. DSM Control Memory...32
Figure 18. Input / Output Channel Events...35
Figure 19. Discrete and Serial Module Interfaces...37
Figure 20. Hardware Design Flow ..44
Figure 21. Finite State Machine Structure [After Ref. 9]..45
Figure 22. VIRTEX-E Development Board Functional Layout48
Figure 23. Adapter Design Components ...50
Figure 24. SDRAM Functional Block Diagram..51
Figure 25. SDRAM Controller Interface...53
Figure 26. Memory Arbitrator State Diagram...55
Figure 27. MBUS Controller State Diagram (Master) ..56
Figure 28. MBUS Controller State Diagram (Slave) ..57
Figure 29. XBUS Controller State Diagram (Processor) ..59
Figure 30. XBUS Controller State Diagram (DSM) ...60
Figure 31. Event Controller State Diagram...61

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. Solutions to Replacing Legacy Processors [From Ref. 3]3
Table 2. I/O Channel Interrupts ...33
Table 3. I/O Event Descriptions...36
Table 4. XBUS Commands – VPM to DSM ...39

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

I would like to thank Professor Russ Duren for providing me with the opportunity,

means, and guidance to complete this thesis. His instruction and mentoring has extended

well beyond this thesis and I am truly grateful for his friendship and support. I would also

like to thank Professor Hersch Loomis for his instruction during the design process and

for his support. I would like to also thank Mr. Rex Coombs, PMA-209, for his time and

exceptional level of support. The use of his lab, the supply of numerous documents, and

the loan of an AYK-14 and CCU were essential factors in completing this thesis.

I am also extremely grateful to the U.S. Naval Test Pilot School for providing me

with the opportunity and means to complete this thesis. I would specifically like to thank

CDR Rich Brasel for allowing the completion of my thesis to be my primary duty. I

would like to thank CDR Paul Sohl for his guidance and support during this difficult

career transition. In addition, I would like to thank CDR C.J. Junge for his friendship,

support, and inspiration.

My extreme thanks also goes to CDR Mike ‘Croc’ Croskrey for being my

teammate on the AYK-14 recovery. I am indebted to you for your support on this thesis

and on my transition from the Navy. It is a privilege to have been your classmate and

your friend.

And finally my thanks goes to my wife and best friend, Michelle. I can never

thank you enough for your unwavering support. I could never have completed this thesis

without you by my side. To reach the stars, you must stand on the shoulders of giants.

Thank you for being my giant!

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

I. INTRODUCTION

A. THE LEGACY AVIONICS ISSUE

The 1990’s was a decade that ushered in many dramatic changes in the world.

These changes had a profound effect on the U.S. government and the armed forces in

particular. The two events that had the greatest effect on the military were the fall of

communism and the technological revolution in the electronics industry.

The end of the Cold War left the military without a formidable adversary. This, in

turn, led to budgetary changes that affected all branches of the military. More

specifically, the funding for the acquisition of new military aircraft was greatly reduced.

This occurred in parallel with a similar reduction in the budgets for modernization of

existing, or ‘legacy’1, aircraft. In order to deal with the shrinking budget, the operational

lifetimes of many of these legacy aircraft were extended beyond their original service

lifetimes. This has led to the average age of a U.S. Military aircraft being 20 years and

continuing to increase.[Ref. 2:p. 1]

This increase in average age has reduced the effectiveness and readiness of the

armed forces as a whole. According to the ‘Committee on Aging Avionics in Military

Aircraft’, the U.S. Air Force reported a 10 percent decrease in readiness during the

1990’s. The committee attributed this decline to the increasing age of the aircraft,

“particularly the aging avionics systems on which they depend.” [Ref. 2:p. 1] The

shrinking budgets for upgrades to these avionics mean that the decline in readiness will

most likely continue unless lower cost solutions can be found.

The technological revolution that has occurred during the 1980’s and 1990’s has

brought with it great advances in electronics and computing. However, the economic

impetus behind these advances has increasingly come from the commercial sector. As

Reference 2 states “whereas the military once provided a large and profitable market for

the electronics industry, the military electronics market today constitutes less than 1

percent of the commercial market.” This means that the needs and requirements of the

1 The definition of legacy for this thesis will be as defined in [Ref. 1:p. 1] as any system that has been

“designed, developed, and fielded.”

1

military have had diminishing influence on the products that industry designs and

produces.

The previously discussed budget shortfalls along with the reduction of influence

in the commercial electronics sector have caused military avionics systems in general to

fall further behind current technology. As these legacy avionics systems get older, the

costs for modernization along with the costs to support the current systems continue to

increase. Therefore, the need is clear for a way to modernize these aging systems that will

lower these costs in the future.

B. POTENTIAL SOLUTIONS TO THE LEGACY PROBLEM

The solution to a problem as complex as the legacy avionics issue is not clear.

The overall solution will lie in changes to design methods and acquisition policies that

will continue to look for the benefits promised by COTS integration. Most importantly,

the solution must also address the additional unforeseen problems that this integration has

brought with it in a more far-reaching way.

This solution to the legacy avionics problem as a whole is too complex to be

covered in one thesis. This thesis therefore will narrow the subject to address the area of

microprocessors and their associated communication interfaces. This area can be

considered of central importance to the problem as a whole. This is because

microprocessors are so central to the performance of any avionics systems that any

increase in performance of the processor will in turn almost guarantee an increase in

performance of the entire system.

In his master’s thesis, CDR Mike Croskrey [Ref. 1], investigates the possible

solutions for the legacy avionics problem as they apply to microprocessors. He suggests

several solutions to the problem and compares and contrasts the benefits and drawbacks

of each. These solutions and their advantages are summarized in Table 1.

2

Proposed Solution Advantages

Upgrade to a COTS binary compatible
microprocessor, when available.

! Maintains old code and allows incremental
updates using the new processor

! Assures functionality of existing code

Maintain old processor or capability of
executing the old code with hardware
1) Keep old processor board and add a COTS
processor board
2) Develop a dual instruction set processor
3) Port the old processor to an ASIC
4) Port old processor to an FPGA

! Maintains old code and allows incremental
updates using the new processor

! Assures functionality of existing code
! ASICs are fast and have low power

requirements
! FPGA relatively easy to modify if

problems found

Maintain the capability of executing the old
code using a software emulator

! Assures functionality of existing code

Port the old code to a new processor family ! May increase throughput

Translate the code to Higher Order Language
(HOL)

! Improves ability to maintain
knowledgeable workforce

! Object oriented code facilitates reuse

Translate the code to COTS assembly language ! Facilitates use of a more current processor

Table 1. Solutions to Replacing Legacy Processors [From Ref. 3]

The solution that this thesis will focus on is the design and implementation of new

hardware that is binary compatible with the existing processor and therefore able to

execute the existing code. This hardware solution will also be binary compatible with all

external interfaces since these components will not be redesigned as part of this thesis.

C. REENGINEERING

Forward engineering is the process of creating a new system and can be roughly

broken down into three stages or processes. These stages include requirement

specification, design, and implementation. The process of designing a system to replace

an existing legacy system requires additional design steps in order to recover the design

that is to be replaced. These additional steps can be grouped into a process called reverse

engineering. Reverse engineering is the process of analyzing a subject that serves to

identify its components and their interrelationship as well as produce a representation of

3

the system at a higher level of abstraction. Its primary purpose is to “increase the overall

comprehensibility of the system for maintenance and future development.” [Ref. 6, p16]

Reverse engineering can include the same steps defined in forward engineering

but in reverse order. It also includes an additional step, or sub area, termed design

recovery. Design recovery is a process in which domain knowledge, external information,

and deduction are combined with observation to identify higher-level abstractions than

those obtained directly. It is basically the process that combines all available resources to

reproduce the information that allows a complete understanding of what the system does

and how it does it. [Ref. 6]

In order to design and implement a new system that will replace an existing

system, both the reverse and forward engineering processes must occur. This overall

process, of both reverse and forward engineering, is termed reengineering. It can be

defined as “the examination and alteration of a subject system to reconstitute it in a new

form and the subsequent implementation of the new form.” [Ref. 6, p15]

The concept of rapid prototyping is a process that provides the means to produce

prototypes of a design early in the design process. These prototypes allow the testing of

key aspects of the design continuously throughout the design stage so the effects of early

design decisions can be determined before other design decisions are made. The benefit

of these prototypes increases as the complexity of the overall design increases.

In reengineering, rapid prototyping has an additional benefit that can both speed

the design process and validate the design. This additional benefit is the ability to test the

prototype using the environment and tools available to test the original design. This is

especially important in complex designs or designs that lack detailed documentation.

D. PURPOSE OF STUDY

The purpose of this study is to investigate the process of reengineering a legacy

avionics system, particularly the memory and communication interfaces of an embedded

microprocessor system. It will include the implementation of the recovered design using

Field Programmable Gate Array (FPGA) technology. It targets the AN/AYK-14(V) Navy

4

Standard Airborne Computer; specifically the XN-8 chassis used onboard the F-18 C/D

aircraft. This computer was chosen not only because it is representative of the legacy

avionics challenge already addressed, but also because the AYK-14 is the focus of an

analysis of alternatives being conducted by the Naval Air Systems Command (NAVAIR)

Advanced Weapons Laboratory (AWL).

The secondary purpose of the design recovery will be to serve as a reference for

designers and programmers who are continuing work on the AN/AYK-14.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

II. DESIGN RECOVERY

A. OVERVIEW OF REENGINEERING PROCESS

Chapter I defined the terms that describe the process and the steps involved in

engineering processes, which are illustrated in Figure 1.

DesignRequirements Implementation

Reverse Engineering Reverse Engineering

Forward Engineering Forward Engineering

Design Recovery

Reengineering AYK-14 Reengineering Plan

Figure 1. Engineering Processes

The AYK-14 Reengineering Plan, adapted from Reference 6 and shown in Figure

1, helps to depict the steps that were followed in this thesis. The key point that is

illustrated is that the AYK-14 reverse engineering phase only investigated to the level of

the design. The requirements were not analyzed directly for numerous reasons. First, the

primary goal of this project was to design a replacement for the AYK-14 processor that

was binary compatible with the rest of the system, therefore there was little room for

changes to the overall design that would better meet the requirements. Another reason

was simply that the time and resources available to continue the design recovery to the

requirements level were not available. It should be pointed out that the requirements were

researched at a high level as part of the design recovery to aid in the understanding of the

design and implementation.

7

B. OVERVIEW OF THE AYK-14

An understanding of the mission and history of an avionics system is essential to

the recovery of its design. This section will give a brief introduction to the AYK-14 to

help define components and their roles. However, it is recommended that the reader refer

to References 1 and 7 for a more detailed analysis and background on the system. The

documentation supporting the AYK-14 was produced at varied times in the computer’s

lifecycle and therefore only considers equipment available at the time it was authored.

This section is also intended to illustrate all of the major components of the system, even

if they are outdated, in order to provide a reference when referring to the documentation.

All of the documentation used in the design recovery is listed in Appendix A.

1. History of the AYK-14

Development of the AYK-14 began in 1976 by Control Data Corporation. It was

designated the Navy Standard Airborne Computer in 1986. Since then, the AYK-14 has

been used on seven types of Navy and Marine Corps aircraft including the AV-8B, F-

14D, and F/A-18C/D. It consists of a family of modules that fit into a plug-compatible

backplane. These modules can be broken down into four groups by function and they

include processor, I/O, memory, and power. As the AYK-14’s requirements have

changed and technology has improved, the modules in each subsystem have evolved to

increase overall capability. Therefore, there are numerous versions of the AYK-14 based

on platform requirements and modules present.

2. Processor Subsystem

The processor in the AYK-14 has evolved through three generations of upgrades.

The first generation is the central processor unit (CPU), which consists of three double-

sided modules: general processor module (GPM), processor support module (PSM), and

extended arithmetic unit (EAU). The second generation is the single card processor

(SCP) that combines the three modules of the CPU into one module. The third generation

processor is the very high-speed integrated circuit (VHSIC) processor module (VPM). An

attribute of the VPM that is important to highlight is that it is the first processor to have

onboard memory (1 M-word). The VPM is the processor that will be targeted for design

recovery in this thesis.
8

There are two additional processors that are used solely for I/O functions. The

first generation is the I/O processor (IOP), superceded by the extended I/O processor

(EIOP).

3. Memory Subsystem

The memory subsystem consists of memory control modules and memory

modules. The memory control modules provide access of the memory modules to the

processor over the memory bus (MBUS or CPUBUS). There are three control modules:

memory control module with memory (MCMM), memory subsystem module (MSSM),

and the memory control module (MCM). There are four memory modules with four

different forms of memory: DRAM memory module (DMM), programmable memory

module, using EEPROM, (PMM), semiconductor memory module, using SRAM,

(SMM), and core memory module (CMM).

4. Input / Output Subsystem

The I/O subsystem consists of a combination of I/O modules dependant upon the

communication requirements. There are eight types of I/O modules that can be further

classified as smart or standard. A smart I/O module has the ability to perform additional

processing normally performed by the processor or I/O processor. This capability will be

defined in greater detail in section H. The I/O modules interface with external equipment

via buses or discretes. The I/O modules communicate with the processor via the I/O bus

(IOBUS or XBUS). An AYK-14 can contain up to 16 I/O modules, with a maximum of

five smart modules, depending on the Chassis used. The I/O modules and their

classifications are listed in Figure 2.

5. Power Subsystem

The power subsystem is a single module that provides regulated power to all other

systems. There are four types of module dependant upon the power requirements of the

system. They are the power converter module PCM –1, PCM-2, PCM-3, and PCM-60.

6. Chassis Subsystem

The chassis subsystem is the housing used to contain all of the modules. There are

nine standard chassis types to meet the size and connection requirements of the different

9

AYK-14 roles. The chassis contains a backplane into which each module is plugged to

provide communication.

 Chassis Subsystem
! Type 1
! Type 2
! Type 3
! Type 4
! Type 5
! Type 6
! Type 7
! Type 8
! Type L
! FTAS

Processor
Subsystem

Processors

! VPM
! -25A
! -25B

! SCP
! CPU (3 Cards)

! GPM
! PSM
! EAU

I/O Processors

! EIOP
! IOP

Memory
Subsystem

Memory Control Modules

! MCMM
! MSSM
! MCM

Memory Modules / Type of
Memory

! DMM
! Dynamic RAM

! PMM
! EEPROM

! SMM
! Static RAM

! CMM
! Core Memory

I/O
Subsystem

Memory Modules / Bus format

Smart modules

! DSM
! MIL-STD-1553A/B

! NDM-B
! NTDS

! NDM-C
! NTDS

Standard Modules

! SIM-A
! MIL-STD-1553A

! SIM-B
! MIL-STD-1553B

! NIM-A
! NTDS

! NIM-B
! NTDS

! NIM_C1
! NTDS

! NIM-S
! NTDS

! PIM
! MIL-A-85232

! RIM
! EIA-STD-RS-232-C

! SMIOM
! UNIVAC 1832

! PPSM
! DIOM
! DIM

Power Subsystem

! PCM-1
! PCM-2
! PCM-3
! PCM-60

MBUS (CPUBUS)

XBUS (IOBUS)

Figure 2. AYK-14 Subsystems

C. AYK-14 CONFIGURATION ON THE F-18C/D

The current AYK-14 configuration that is used on the F-18C/D is the CP-2360. It

contains two VPMs (one 25B - Master, one 25A - Slave), six DSMs, one DIM, and one

PCM-1 as shown in Figure 3. This is the configuration that was targeted for this thesis.

10

More specifically, the VPM processor as used in this configuration was the target of the

reengineering process.

PCM-1
Power Supply

DIM
I/O Module

DSM
I/O Module

VPM-25B
Master Processor

VPM-25A
Slave Processor

DSM
I/O Module

DSM
I/O Module

DSM
I/O Module

DSM
I/O Module

DSM
I/O Module

Figure 3. AYK-14 Chassis 8 – CP2360

 The avionics system uses two CP2360’s as Mission Computers, designated MC1

and MC2. MC1 processes all navigation and monitoring tasks and MC2 processes all

sensor and weapons control tasks. The Mission Computers communicate with the other

systems over six 1553 data-bus channels, as illustrated in Figure 4.Earlier F/A-18 aircraft

use a chassis with only five 1553 data-bus channels.

11

Figure 4. Six 1553 Data Bus Channels on F/A-18 C/D

D. VPM PROCESSOR

The VPM is a 16-bit Complex Instruction Set Computer (CISC) type processor

with over 1 Million words of on-board memory. It is a 2-sided module that is organized

into 3 major sections. These sections are the Instruction Execution Processor (IEP),

Cache/Instruction Fetch (C/IF), and Adapter and are shown in Figure 5. The VPMs

primary interfaces include the Input / Output Bus (XBUS or IOBUS), the memory bus

12

(MBUS), and the Event and Event Monitor busses (EBUS and EMON) along with

multiple discretes. The A-side contains the 24 memory chips, the Adapter array, the

MBUS and XBUS data and control signal buffers, and the external discrete receivers.

The B-side contains four arrays, including the IEP and C/IF, 34 memory chips, and Event

drivers and receivers.

B SIDE

A SIDE

ON BOARD MEMORY
1024K x 16

Error Correction Code
1024K x 8

BOOTSTRAP
MEMORY

32K x 8
ADAPTER

MBUS

XBUS

INSTRUCTION
EXECUTION
PROCESSOR

2 Chips

ALU /
 Microsequencer

CACHE/
INSTRUCTION

FETCH

2 Chips

Control Address /
Data Path

MBUS(00:23)

XBUS(00:23)
ADDRESS (04:20)

DATA (00:23)

EVENT BUS

CACHE
MEMORY

32K x 16

MICROMEMORY
RAM

8K x 64

MICROMEMORY
EEPROM
256K x 8

EVENT MONITOR BUS

FUNCTION
INTERFACE

ADDRESS
INTERFACE

EBUS(00:07)

EMONBUS(00:07)

TRACE
FILE

8K x 23

IEP FILE
8K x 16

ELMR FILE
8K x 16

ERROR LOG
8K x 8

Figure 5. VPM Block Diagram

The IEP section is comprised of the microsequencer chip, the arithmetic chip, and

the micromemory. It is implemented using a microprogrammed processor that executes

microcode programs. Microcode programs control elementary parts of the processor and

define the software instruction set used for the AYK computer. Every software command

executable by the VPM is interpreted in the IEP by a series of microcommands. These

commands, or microcode, are stored in EEPROM and downloaded to SRAM at start-up.

The microcode stored in these memories is called firmware. Some other functions of

13

firmware include running BITs, servicing Events, and I/O operations. The IEP design

was recovered and implemented by CDR M. Croskrey in his master’s thesis and his

design serves as the instruction processor for the design developed here. For additional

details concerning the IEP design recovery, refer to Reference 1.

The C/IF section is comprised of the cache control and address chip, the cache

memory, the data path chip, and the trace file. It provides the on-chip cache for the IEP

and manages requests for memory to the adapter. The use of an on chip cache has been

shown to significantly increase throughput and overall performance of most processors,

however, the design recovery and implementation of this section is left to future students

continuing work on this project due to time constraints.

E. ADAPTER

The primary function of the adapter is to control the onboard memory interface

and the XBUS and MBUS interfaces. It handles all requests for memory from either the

data path array, other VPMs via the MBUS, or I/O modules via the XBUS. It interfaces

with the event system and contains two sets of page registers used for I/O memory

references.

The VPM is capable of operating in two memory modes dependant upon the other

modules present. These modes are standalone and non-standalone. In standalone mode,

the VPM performs the role of Memory Controller and arbitrates memory requests and M

and X bus usage. In non-standalone mode, a memory controller, such as the MCMM, is

required to manage the memory. Both VPMs in the CP-2360 operate in the standalone

mode.

The VPM is a 16-bit processor and the IEP and C/IF use 16 bits addresses for

memory. The VPM has a memory reach of 8 million locations, which requires 23 bits for

addressing. In order to reach this amount of memory, the VPM uses memory paging. The

VPM uses banks of 64 16-bit wide Page Registers. The upper 6 bits of the 16-bit

Software Address points to one of the 64 page registers. The contents of this register are

used to create the complete 23-bit address, with 3 bits being used for memory protection.

This 23-bit address is considered the absolute memory address and can address any

location in the VPM memory range. The absolute address generation is depicted in Figure

14

6 for clarity. The control address array contains four sets of 64 page address registers

used for generating the absolute address for on-board memory references.

Page Register Number Address Within Page

Page Address

9 8 7 6 5 4 3 2 1 015 14 13 12 11 10

11 10 9 8 7 6 5 4 3 2 1 015 1314 12

9 8 7 6 5 4 3 2 1 022 21 20 19 18 17 16 15 14 13 12 11 10

Software Address (16 bits)

Page Register Contents (16 Bits)

Absolute Address (23 Bits)

Execute Protect

Write Protect

Read Protect

Page Register 0
Page Register 1
 “
 “
 “
Page Register 63

Page Register Set

Figure 6. Address Generation

The VPM on board memory (OBM) consists of 1024K locations of 24 bit words.

Each word contains 16 bits of data and 8 bits of error correction code. The memory is

broken down into 256K of SRAM and 768K of EEPROM. The bootstrap memory

consists of 32K addresses of 8-bit data organized as 16K of 16-bit word storage on a

EEPROM. The lower 8K is loaded with bootloader programs for use on start-up or after a

reset. The memory address range of the OBM is dependant upon the VPM’s location and

role within the Chassis. The memory map of the entire address range is shown in Figure

7.

15

PAGES 0 - 3F 400-6FF 800 - AFF C00 - EFF 1000 - 12FF

 700-7FF B00 - BFF F00 - FFF 1300 - 13FF

0 64K 1M 2M 3M 4M 5M

 Master VPM

EEPROM 100000
 1BFFFF

RAM 1C0000
 1FFFFF

 SLAVE VPM #1

EEPROM 200000
 2BFFFF

RAM 2C0000
 2FFFFF

 SLAVE VPM #2

EEPROM 300000
 3BFFFF

RAM 3C0000
 3FFFFF

 SLAVE VPM #3

EEPROM 400000
 4BFFFF

RAM 4C0000
 4FFFFF

MEM MOD or VPM-B

000000
00FFFF

Figure 7. Absolute Address Assignment

F. EXTERNAL BUS OPERATION

The MBUS and XBUS (or IOBUS) are independent, 24-bit bi-directional busses

that provide communication between the modules of the AYK-14. The MBUS is used to

provide memory access to every VPM’s OBM and with memory modules. The XBUS is

used for communications with I/O modules and for inter-processor communications

(IPC).

The process of allowing modules to gain control of bus and transfer data on that

bus is called bus arbitration. In standalone memory mode, the adapter of the Master VPM

acts as the arbitrator for both busses. There are five primary control signals that are used

for bus arbitration and control for each bus. These signals are DESIRE and GRANT for

arbitration, and REQUEST, ACKNOWLEDGE, and RESUME for control.

Bus operations are initiated by the user and consist of two parallel word transfers.

The first word is a 24-bit control word and is transferred from the VPM or smart I/O

module to address a particular module and provide control information. The second word

is a 16-bit data word that transfers data or status as input or output as determined by the

function word.

1. Standalone Mode MBUS Operation

The VPM standalone mode of operation uses the memory control logic of the

VPM that eliminates the need for a separate memory control module. Each VPM has

access to the OBM of any other VPM, as well as memory modules if used. The MBUS

functions as a 23-bit physical (post-paged) address memory bus, with the OBM address

16

allocation as shown in Figure 7. Each VPM performs its own paging and all I/O memory

references use page set 0 on the master VPM. There is no interprocessor communication

of page register or page state changes. Therefore, the paging and protection contained in

each VPM is applicable only to that VPM. A single memory bus is used to prevent the

interleaving of off-board memory references.

In standalone mode, the MBUS arbitration logic supports two external

desire/grant signal pairs plus the processor’s own desire/grant pair for a total of three

users. Additional users can be added by daisy chaining the desire/grant signals. The

version of the AYK-14 used in this thesis only has two MBUS users so the details of

daisy chaining will not be covered here.

A user requests use of the bus by activating its DESIRE signal (active low). The

desire signals of both external users are resynchronized before being used in the

arbitration logic. The internal desire signal is captured in a flip-flop before it enters the

arbitration logic. The synchronous desire signals are fed into the prioritization logic to

determine which user is granted control of the bus. The algorithm makes use of a last user

register that keeps track of which user was granted control of the bus last. The result is a

rotating priority scheme based on which user had the bus last. The module that last used

the bus drops to the lowest priority and the one following it gets the highest priority.

The arbitration algorithm outputs the next-user, which is fed into a latch that

opens during the last half of the clock cycle. When enabled, the latch captures the next-

user, which causes the appropriate GRANT signal to be enabled. The asynchronous and

synchronous (post flip-flop) desire signals must both be active as a condition for

activating a grant signal. This is to ensure that the grant is not activated before the desire

signals are synchronized.

In addition to the five hand-shaking control signals, the VPM utilizes 10

additional signals for MBUS error detection and control. The signals are listed in Figure

8 and they include four parity bits, four control signals, a busy signal and an error signal.

The first two control signals, MSB_WRITE and LSB_WRITE, indicate the type of

memory operation, read or write. The other two control signals exist for future capability.

The busy signal, M_BUSY, is used to indicate when the VPM is driving data on the bus.

17

The parity bits are used for error detection, with three used for the 24 address lines, for

both the address and the data words, and one for the four command signals. The error

control signal is used to indicate when a parity error is detected. The additional control

signals are needed because all of the 24 bits are used for the address in the command

word when operating in the standalone mode.

M_BUS:00-23

M_Bus Control Bits

M_GRANT_OUT:00-01

M_DESIRE_IN_L:00-01

M_DESIRE_OUT_L

M_GRANT_IN_L

M_Bus Arbitration Bits

LSB_PARITY (for Bits 0-7)

MSB_PARITY (for Bits 8-15)

ADRS_PARITY (for Bits 16-23)

CMD_PARITY (for Command signals)

M_Bus Parity Bits

MSB_WRITE_L
LSB_WRITE_L
32_BIT_DATA

IPL_WRITE

VPM

M_REQUEST_L

M_ACKNOWLEDGE_L

M_BUSY_L

M_RESUME_L

BUS_ERROR_L

S_BUSY_L

Figure 8. MBUS Interface Signals

After receiving control of the MBUS via a Grant signal, communication on the

MBUS is initiated by the VPM activating a Request signal along with the 23-bit absolute

memory address. The VPM also drives the four parity bits and the four additional control

signals. The VPM who’s OBM is in the range of the address checks the parity of the

address and the command signals. If there is an error, it activates the Error signal and

stops responding to the memory request. If the parity check is successful, the responding

VPM activates the Acknowledge signal and clocks-in the address. The initiating VPM

activates its MBUSY signal to indicate that it is ready to either read or write data on the
18

MBUS. It will also deactivate the desire signal to the arbitration logic to allow the next

user to be determined.

DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE
/S_BUSY)

(RESUME)

Output Operation

CONTROL DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE
/SBUSY)

(RESUME)

20 ns min

CONTROL

0 ns min

0 ns min

(M_BUSY_

45 ns MAX20 ns Min

125 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

0 ns Min

(MBUSY)

0 ns min

0 ns min

0 ns min

Input Operation

Figure 9. MBUS Standalone Operations

19

 If the control signals indicated a read command, the initiating VPM will

deactivate the Request signal and the responding VPM will drive the requested data on

the MBUS along with the corresponding parity bits. When this data is valid, the

responding VPM activates the Resume signal to indicate that the data is valid. The

initiating VPM will clock-in the data and deactivate its MBUSY signal to indicate that

the data has been read. The responding VPM will then stop driving the MBUS and

deactivate the Resume signal to terminate the operation.

If the control signals indicated a write command, the initiating VPM will drive the

requested data on the MBUS along with the corresponding parity bits and then deactivate

the Request signal. When the responding VPM sees the deactivation of the Request

signal, it clocks-in the data and activates the Resume signal. In response to the Resume

signal, the initiating VPM removes data from the MBUS and stops driving the four

control signals and the MBUSY signal. The input and output operations are illustrated in

Figure 9.

2. Standalone XBUS Operation

The XBUS is the primary communication path between the processor and the I/O

subsystems. All I/O control, instructions, and data transfer operations utilize this bus. For

‘smart’ I/O modules, the XBUS provides a means for direct access to OBM. The XBUS

also provides an asynchronous channel for interprocessor communications. The XBUS

interface signals are illustrated in Figure 10.

In standalone mode, the XBUS arbitration logic supports six external desire/grant

signal pairs plus the processor’s own internal desire signals for a total of seven users.

Additional users can be supported through daisy chaining of desire and grant signals. The

Adapter on the master VPM monitors the external desire signals along with its own

internal desire signal. The adapter arbitration logic determines the next user through a

rotating equal priority process implemented in the same fashion as the MBUS arbitration

previously discussed.

20

IPC_MODE_L

X_BUS:00-15

X_REQUEST_L

X_ACKNOWLEDGE_L

X_RESUME_L

X_GRANT_IN

O_X_GRANT_IN

X_DESIRE_OUT_LX_BUS:16-23

Used when Slave VPM

VPM

X_GRANT_OUT:00-05

X_DESIRE_IN:00-05

M_Bus Arbitration Bits

Figure 10. XBUS Interface Signals

The first step in XBUS communication is the Desire signal. Any module

requesting use of the bus will activate its desire signal and wait for a response from the

adapter. Once the adapter has determined the next user through the arbitration logic, it

activates the Grant signal to that module. The owner of the bus then activates the Request

signal while simultaneously driving the 24-bit control word onto the bus. The upper 8 bits

of the control word, or XBUS Command Field, contain control information regarding the

type of operation requested and the intended recipient. The lower 16-bits contain either a

control word, an address, or data depending on the type of operation requested. Figure 11

illustrates the breakdown of the Command word and summarizes the meanings of the

fields.

21

Memory Operation

S MO CH # / CMD

16 1817 19 2120 22 23

Output Operation

Channel Number or
Additional Command

Status Operation

Status Bit :
S : = 1 Operation is a Status (input) or Function (output) operation

= 0 Operation is a Data transaction
Output Bit :
O : = 1 Transferring data FROM the initiating module TO the responding

module (OUTPUT)
= 0 Transferring data TO the initiating module FROM the responding

module (INPUT)
Memory Bit :
M: = 1 Operation is a memory type (memory read/write or memory

status/function)
CH# / CMD Bits are additional Command information

= 0 Operation is an I/O operation
CH# / CMD Bits are a Channel Number

CH# Definition

00 - 0F I/O Module Channel Numbers
10 - 16 Processor Channel Numbers
17 Broadcast to all Modules
1C Broadcast to all IPC Modules
1D Broadcast to all Smart I/O Modules
1E Adapter Channel Number
1F Broadcast to all I/O Modules

CTRL / ADDR / DATA

11109876543210 15141312

Control or Address Out
or

Data Out or In

XBUS 24-Bit Command Word

Figure 11. XBUS Command Word Format

After the module that was addressed decodes the control word, it activates the

Acknowledge signal in response. If the operation commanded is an output, the module

that issued the control word drives 16 bits of data onto the bus. The receiving module

clocks-in the data and activates the Resume signal to indicate receipt. If the operation is

an input, the commanded module activates the Resume signal, to indicate that it is now

driving the bus, followed by driving the 16 bits of data onto the bus. The data will remain

active for the duration of the Resume signal. Upon deactivation of the Resume signal, the

arbitration logic will update the priority list and begin the process again. For I/O module

broadcast operations, the Master VPM always generates the bus Acknowledge and

Resume signals regardless of initiating module. For processor module broadcast

22

operations, the initiating module generates the bus Acknowledge and Resume signals.

These steps are illustrated in Figure 12 for both input and output operations.

DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE)

(RESUME)

Output Operation

CONTROL DATA

(DESIRE)

GRANT

(REQUEST)

(ACKNOWLEDGE)

(RESUME)

Input Operation

0 ns min

20 ns min 0 ns min

0 ns min

50 ns max

0 ns min

0 ns min

45 ns max

CONTROL

0 ns min

0 ns min

20 ns max

100 ns max

Figure 12. XBUS Timing Diagrams

When the XBUS is used for interprocessor communications, only bits 16-23 of

the 24-bit bus are used for command and control along with the control and hand shaking

signals. These 8 bits are referred to as the IPC BUS. Interprocessor communications

consist of input and output transactions between VPMs and can be either from one VPM

to another or broadcast to all VPMs in the system. The additional control signal used is

23

the IPC MODE signal and is connected to all VPMs. When activated, it causes all other

VPMs to interpret Bits 16-23 as an IPC command.

G. EVENT SYSTEM

The event system is the mechanism by which the IEP is notified of conditions on

the VPM, in other modules, or on other chassis that require servicing. It is controlled by

the microsequencer array, part of the IEP, which monitors all sources for ‘active’ events.

An active event is a condition or state that requires some type of action from the

processor. Each event has a routine in firmware associated with it that can be called by

the microsequencer to service the event.

The IEP, via firmware, checks for active events during idle loops when software

is stopped or before each instruction is executed when software is running. The firmware

interrogates for and handles all active events before it executes another software

instruction. If more than one event is active, the microsequencer prioritizes the events

based on a configuration dependant priority scheme. The event system provides a means

of monitoring indicators, warnings, software chain execution, and external data transfers.

There are two parallel subsystems in the event system; the polled event system and the

direct event system.

The VPM also has an interrupt system similar to other processors in addition to

the event system. Normal software execution is stopped for the handling of these

interrupts. All of these software interrupts2, not automatically trapped by microcode, are

signaled via activation of associated events. The interrupts to the VPM can come from

any module in the Chassis and are divided into three classes based upon their source.

Class I interrupts deal with hardware failures or functions. Class II interrupts indicate

software failures or functions. And Class III interrupts are for I/O failures or functions.

The interrupts can be locked out by class, via software commands, by setting bits 12 – 14

in status register 1. All interrupts and the events associated with them are listed in Figure

13.

2 The AYK-14 documentation refers to all three classes of processor interrupts as ‘software interupts’

because they can interrupt normal execution of the software for handling.

24

Interrupt
Event
Class

Event
Discrete

Hardware I Power Fault 0 0/1
Memory Timeout 5 1
Memory Parity 5 2
Hardware Fault Warning 5 3
I/O Failure - -
Thermal Overload 0 2/3
Hardware Fault 5 6

Software II CP Instruction Fault - -
I/O Instruction Fault - -
Floating Point
Under/Overflow - -
Executive Return - -
Executive Mode Fault - -
Memory Protect Fault 6 0
RTC Overflow 6 1
Monitor Clock Overflow 6 2
System Reset 6 4
Processor Interrupt 0 6 6
Processor Interrupt 1 6 7
Fixed Point Overflow - -
Module Overtemp 5 7
External Interrupt 2 3 6
External Interrupt 3 5 4

I/O III
I/O Channel Abnormal
Interrupt (ERI) 7 0/4
External Interrupt (EII) 7 1/5
Output Chain Interrupt
(OCI) 7 2/6
Input Chain Interrupt (ICI) 7 3/7

Class

Figure 13. Software Execution Interrupts

1. Polled Event System

Polled events are events that occur on other modules that require servicing by the

VPM processor. They deal primarily with software chain execution or external data

transfers. They are referred to as polled events because the event monitoring system uses

a polling sequence to determine which events are active. The event polling system

consists of two 8-bit busses, the event monitor bus (EMON) and the event bus (EBUS).

The EMON bus is driven by the VPM hardware and used to pass commands to manage

the polling sequence. The EBUS is an open collector bus that is driven by the modules of

the event system in response to commands on the EMON bus.

25

Polled events are organized by four attributes including priority, class, group, and

discrete. Every event is assigned to one of three priority levels, and one of eight classes.

An important note is that the event attribute of class is separate from the interrupt

attribute of class. As an example, all class III interrupts shown in Figure 13 are listed in

the event class seven. The binary form of the class, group, and discrete information of an

event is used to form an event vector. This vector is used to point to the starting address

in microcode of the event handling routine and is shown in Figure 14.

There are eight different classes of events, with four dedicated to I/O events and

four to non-I/O events. The I/O events are further broken down into groups or channel

pairs. Since there are only eight EBUS lines, the I/O modules must be grouped into the

channel pairs to provide the ability for up to 16 I/O modules to activate events. This is

explained in more detail when the polling sequence is covered. Within each class of

events, there are eight discrete events for non-I/O events, and four for I/O events. All of

the events are listed by class and discrete in Appendix B (See Microcode Reference

Manual – p 4-17).

The event monitor continually queries the modules in the event system for events

that have become active. It does this by cycling through a series states during which it

determines which events are active, and which active event has the highest priority.

These states are sent to the modules via the EMON bus and the modules responses are

returned via the EBUS. The polling sequence is required because the modules on the

EBUS do not each have discrete signals to indicate the presence of an event. The EMON

bus is shown in Figure 14 along with a listing of the bits meanings.

a. 1st State: ESTATE = 01

The first state in the polling sequence is ESTATE = 01. In this state, the

event monitor is requesting any active events from any module capable of initiating a

polled event. When any module detects this state on the EMON bus and has an active

event, that module will drive the EBUS line corresponding to the class of event that is

active. If there are no active events, the event monitor remains in this state. If an event is

detected on the EBUS, the event monitor will determine the highest priority class of

event that is active and drive the ECLASS lines with that class value. If that class is an

26

I/O class (Class = 1,2,4,7), the event monitor will then transition to ESTATE = 10. If it is

a non-I/O class (Class = 0,3,5,6) the event monitor will proceed to ESTATE = 11.

Figure 14. Event Monitor Bus Definition

08 09 10 11 12 13 14 1500 01 02 03 04 05 06 07

1 1

Class: 000 - 111

Discrete: 000 - 111

Channel Number:
0000 - 1111

=0001
(If entered from
suspend mechanism)
= 0111

Event Vector
(Starting address of Event Handling routine in Micromemory)

00 01 02 03 04 05 06 07

EGROUP: 000, Chan. Priority 0,1
001, Chan. Priority 2.3
 “
111, Chan. Priority E,F

ECLASS:001, 010, 100, 111 - I/O Classes
(1 , 2 , 4 , 7)
000, 011, 101, 110 - Non-I/O Classes
(0 , 3 , 5 , 6)

ESTATE: 00 Not Used
 01 Request Event Class
 10 Request Event Group (I/O Only)
 11 Request Event Discrete

EMON BUS
BIT Definitions

b. 2nd State: ESTATE = 10

If the highest priority event class with an active event is an I/O class, then

the event monitor will enter ESTATE 10. Along with the ESTATE bits, the monitor now

27

drives the ECLASS bits with the highest priority class with an active event. In this state,

the event monitor is requesting all modules with active events in the class output on the

ECLASS lines to respond on the EBUS lines. There are two I/O modules, or pairs,

assigned to each discrete line. The event monitor will determine the highest priority

channel pair based on the EBUS response and drive the EGROUP lines of the EMON bus

with that value. The priority scheme used is a function of the wiring of the interconnect

assembly for the assigned slot in the chassis. The event monitor will then transition to

ESTATE 11.

EBUS Event Class Response EBUS Event Group Response

EBUS I/O Event Discrete Response EBUS Non-I/O Event Discrete Response

00 01 02 03 04 05 06 07

Class 7 Response

Class 0 Response

Class 5 Response

Class 6 Response

Class 4 Response

Class 3 Response

Class 2 Response

Class 1 Response

00 01 02 03 04 05 06 07

Chan. Priority E,F

Chan. Priority 0,1

Chan. Priority A,B

Chan. Priority C,D

Chan. Priority 8,9

Chan. Priority 6,7

Chan. Priority 4,5

Chan. Priority 2,3

00 01 02 03 04 05 06 07

Even Chan. Discrete 3

Odd Chan. Discrete 0

Even Chan. Discrete 1

Even Chan. Discrete 2

Even Chan. Discrete 0

Odd Chan. Discrete 3

Odd Chan. Discrete 2

Odd Chan. Discrete 1

00 01 02 03 04 05 06 07

Discrete 7

Discrete 0

Discrete 5

Discrete 6

Discrete 4

Discrete 3

Discrete 2

Discrete 1

(All Signals shown are Asserted Active LOW)

Figure 15. Event Bus Response Matrix

28

c. 3rd State: ESTATE = 11

If the highest priority event class with an active event is a non-I/O class,

then the event monitor will enter ESTATE 11 directly from ESTATE 01. Along with the

ESTATE bits, the monitor now drives the ECLASS bits with the highest priority class

that has an active event. For an I/O class, the monitor will drive the highest priority

channel pair, based on the determination from ESTATE 10, onto the EGROUP lines. For

a non-I/O class, the monitor will drive the EGROUP lines to a known value

corresponding to the class.

01 11 01 10 11 01 11 01ESTATE

E Bus
Strobe

Non-I/O
Event

Sequence I/O Class Event Sequence
Non-I/O Event

Sequence
No Event

Active
No Event

Active

Sample for Discrete

Sample for Group

Sample for Class9 Clock
Cycles

1.5
Clock
Cycles

Figure 16. Event Monitor State Sequence

In this state, the module or module pair with the highest priority should

now be the only one responding on the EBUS. For a non-I/O class, the responding

module will drive the EBUS lines corresponding to the discrete events that it has active.

For I/O modules, the EVEN module of the selected channel pair will respond on the

lower four lines of the EBUS, and the ODD module will respond on the upper four lines.

This restricts the I/O modules to only four events in each class.

The Class, Group, and Discrete values that are obtained are then used by

the event monitor to generate the event vector, shown in Figure 14, for microcode

handling of the highest priority event. After creating the event vector, the event monitor

transitions back to ESTATE 01 and begins the sequence again. The EBUS responses to
29

each ESTATE is shown in Figure 15 and the timing for the polling process is shown in

Figure 16 for additional clarity.

2. Direct Events

Direct events are generated in the control address, data path, and adapter arrays

and sent to the microsequencer array. There are also direct events that come from off the

module as well as some generated internally in the microsequencer array. There are 63

events that can be stored for handling in the direct event register. Direct events provide a

means of notifying the event monitor of an immediate request for service from the

firmware. It is more direct than the polled events but the events are still subject to priority

logic and can be masked as well.

Direct events from the direct event register and the events generated in the polling

sequence are filtered through a class mask. This mask is controlled via firmware and

provides a means to stop specific classes of events from being seen by the priority logic.

The priority logic compares all unmasked events and determines the highest priority

event, which is then serviced by the firmware.

H. INPUT / OUTPUT MODULE OPERATION

The I/O modules provide the communication link between the VPM processors

and other equipment in the system. The VPM communicates with the I/O modules via

the XBUS and Event bus. The I/O modules communicate with other equipment via

discrete signals and buses, specifically the MIL-STD-1553 data bus for the configuration

recovered. The I/O modules are categorized as smart or standard based upon the amount

of on-board processing they are capable of executing.

1. I/O Channel Software

There are three types of commands that are used to control the I/O modules

operation. The first two types are ‘user’ commands that are used in operational programs

and are considered software commands. Some of the capabilities provided are the ability

to initiate and halt I/O channel operation, enable and disable I/O channel interrupts, load

and store control memory words, and read I/O channel status.

30

The first type of command controls the initiation of all I/O channel operation.

This command is the Input / Output Command Request (IOCR), Op Code 7400. This

processor instruction, when encountered in the software during normal program

execution, causes the processor to execute the instructions at a specific location in main

memory called the command cell. The location of the command cell is 0060 and 0061 if

the executing VPM is operating as the master, and 0062 and 0063 if it is operating as the

slave. The IOCR is used in the main source code to start or stop I/O channel programs,

monitor or modify channel operations, and modify Control Memory locations.

The second type of command is the set of processor executable commands that

are used in the source code to control I/O operations. These commands can be broken

down into three classes, including Command Instructions, Chain Instructions, and

Command/Chain Instructions, and are listed in Appendix C. The Op Codes for these

commands fall in the range E0-FF and are illegal unless executed following an IOCR

command. These commands can be executed by the VPM or by a Smart I/O modules.

These are the commands that are used in the programming of I/O channel functions.

The third type of command is the set of command words that can be sent as the

control word of an XBUS operation. These commands are generated by the adapter and

are used to either pass processor executed commands to the I/O module for additional

action or to command I/O module action in response to an active event. These commands

can be either broadcast or addressed to an individual module and can be either two word

(command word and data word) or one word (command word only, data word is ignored)

commands. All of these adapter generated commands are listed in Appendix D (Table A-

2 and A-3 from design guide for I/O modules).

2. I/O Channel Control Memory

Each I/O channel has associated with it a 16-bit by 16-word control memory. This

memory is located on the VPM for standard I/O modules, but is located on the I/O

module for Smart I/O modules. The format and definition of each word in a control

memory is dependant upon the module, however, most modules contain the same basic

words. The control memory contains parameters that are used in the operation of the

associated I/O module, such as pointers to programs, word counts, and status words. As
31

an example, the Control Memory for the DSM is listed in Figure 17 with a brief

explanation of each word’s function.

Spare

Spare

Spare

Bit Jump Word (BJW)

Spare

Buffer Address Pointer (BAP)

Chain Address Pointer (CAP)

Address Table Pointer (ATP)

Command Word 1 / Status Word 1

Command Word 2 / Status Word 2

Message Control Word 1 (MCW1)

Message Control Word 2 (MCW2)

Discrete Control Word (DCW)

Discrete Input/Output Word (DIOW)

Interrupt Clear Word (ICW)

Chain Table Pointer (CTP)

Control WordLocation

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Used with bit jump Chain Instruction

Address of the next memory location in the data buffer

Address of the next Chain Instruction to be executed

Used to calculate BAP as part of data transfer command

Contains word used in 1553 protocol (depending on mode)

Contains word used in 1553 protocol (depending on mode)

Personality dependant mode and control information

Control information common to all personalities

Control info which selects mode of operation for discretes

Used for masking of discretes

Used in association with the Discrete Interrupt

Used to support Tabular Output Operations

Description

Figure 17. DSM Control Memory

3. I/O Channel Chain Programs

All I/O channel operation is initiated through the execution of the IOCR

instruction by the processor. This instruction causes the processor to process the

instruction in the command cell (memory locations 0060-61 or 0062-63). The instruction

in the command cell will be an instruction that initiates activity on one of the I/O

channels. There are two forms of I/O channel activity; I/O information transfer and I/O

program execution or Chaining.

A chain program is a set of instruction, located in main memory, which perform

an operation on an I/O channel. The program is made up only of chain instructions that

are listed in Appendix C. The program normally transfers parameters between main

memory and the I/O channel Control Memory, and initiates transfer of blocks or buffers

of data or control words on the channel interface lines. Multiple I/O channels can have

I/O chains active concurrently, with the event system providing regulation.

32

An important concept to emphasize is the difference in how chain programs are

executed in standard and smart I/O modules. Standard I/O modules do not have the

capability to execute software instructions (the first 2 types of commands previously

discussed). Their chain programs are executed through the VPM processor executing the

software commands in the chain program and sending corresponding commands (the

third type of command previously discussed) over the XBUS to command the I/O

module. The VPM time shares the execution of chain commands between the operational

program and among the I/O modules with active chaining.

Smart I/O modules are capable of executing directly all of the software

instructions that can be used in chain programs (i.e. all commands from Appendix C.)

This means that once an I/O operation is initiated via an IOCR command, the VPM will

continue processing the operational program and the smart I/O module will execute the

chain program. It is able to do this by accessing the chain instruction directly from

memory using the XBUS.

4. I/O Channel Software Interrupts

Class III software level interrupts are associated with I/O module operation. These

interrupts can be enabled or locked out on an individual channel or as a group. They are

handled via an interrupt handling routine that the processor is vectored to upon interrupt

recognition. These interrupts are listed in Table 2.

Class Priority Interrupt Definition

III 1 ERI Error Interrupt

III 2 EII External Interrupt

III 3 OCI Output Chain Interrupt

III 4 ICI Input Chain Interrupt

Table 2. I/O Channel Interrupts

ERI interrupts are generated upon detection of an error condition. EII interrupts

are generated when the I/O module receives a channel interrupt word. The interrupt word

is stored in a table in main memory prior to generation of the interrupt. The address in the

table is 80 plus the channel number (80-8F). OCI and ICI interrupts are generated when

33

the chain program on the associated channel encounters and executes the Interrupt

Processor (IPR) instruction.

5. I/O Channel Events

There are four classes of events that can be set by I/O modules to signal active

events to the VPM. These events are used to communicate the progress of data transfer

operations and chain programs, and to signal software interrupts. All of the I/O events are

listed by class and discrete in Figure 18 and a description of each is given in Table 3.

The event system provides a means for the processor to efficiently manage the

numerous operations occurring on the I/O channels. It allows the processor to start an

operation on an I/O channel and then to continue executing the executive code while the

I/O channel performs its tasks. The events allow the I/O cannels to notify the processor

when it has completed a task and either needs more information or is ready for another

task. It is a means of providing parallel operation of all the I/O channels.

For example, when an I/O chain program is in progress on a channel, that channel

will raise the Input or Output Chain Request Event. While this event is active, the

processor will continue to execute instructions in the corresponding chain program. When

the VPM executes an instruction that indicates a chain program is complete, the firmware

will notify the I/O module via an XBUS command. The I/O module will then deactivate

the chain event.

34

Event
Class Name

Event Bus Discrete

Even Channel Odd Channel

Name Name Name Name Name Name Name Name

1
(001)

Indexed
Data

Transfer

Remote
Terminal
Command

Output
Data

Request 1

Input
Data

Request 1
RTC ODR1 IDR1

2
(010)

Data
Transfer

Unique
Channel
Request

External
Interrupt
Request 2

Output
Data

Request 2

Input
Data

Request 2
UCR EIR2 ODR2 IDR2

4
(100)

I/O
Chain Map

Output
Chain

Request

Input
Chain

Request

External
Interrupt
Request 4

MAP OCR ICR EIR4

7
(111)

Class III
Interrupts

I/O
Channel

Abnormal

External
Interrupt

Output
Chain

Interrupt

Input
Chain

Interrupt
ERI EII OCI ICI

I / O Class Events

Figure 18. Input / Output Channel Events

In Figure 18 it should be noted that the Even and Odd channels have the same

events, however, the Acronyms for the events are listed for the Odd channel to provide a

reference. Also, the repeated discrete events (i.e. ODR1, ODR2) provide for a hierarchy

of event priorities.

6. I/O Channel Basic Operation

The operation of either standard or Smart I/O modules involve communication on

the Event bus, XBUS, and possibly the MBUS. Multiple I/O channels can be operating

chain programs or data transfers at the same time with the event system and priority logic

providing deconfliction and minimizing the amount of time that the processor spends

waiting for a response from the I/O module.

35

Class 1: Indexed Data Transfer
Remote

Terminal
Command

Output Data
Request 1

Input Data
Request 1

RTC

ODR1

IDR1

I/O Module Event Descriptions

Class 2: Data Transfer
Unique
Channel
Request

Output Data
Request 2

Input Data
Request 2

UCR

EIR2

ODR2

IDR2

Class 4: I/O Chain

Map

Output Chain
Request

Input Chain
Request

External
Interrupt
Request 2

MAP

OCR

ICR

EIR4

Class 7: Class III Interrupts

I/O Channel
Abnormal

External
Interrupt

Output Chain
Interrupt

Input Chain
Interrupt

ERI

EII

OCI

ICI

Causes the Processor to request an Index Status Word from the I/O Module via the
XBUS. The status word is used with the Address Table Pointer (CM-7) to generate
a new output Buffer Address Pointer (CM-5)
Causes the Processor to send a data word to the I/O module as determined by the
BAP. This is the highest priority ODR and is used to give priority to time-critical I/
O modules.
Causes the Processor to request a data word from the I/O module and place it in
main memory at the location pointed to by the BAP. This is the highest priority
IDR and is used to give priority to time-critical I/O modules.

Causes the Processor to request a unique function word from the I/O module.
Depending upon the function code returned, the processor will perform a given
function. This is used if I/O module needs additional capability.
Causes the Processor to request an interrupt word from the I/O module. This event
is implemented in conjunction with the Class 7 EII event to provide the instruction
that is processed in the interrupt. This event is a higher priority event than EIR4.

Causes the Processor to send a data word to the I/O module as determined by the
BAP. This is the lower priority ODR.

Causes the Processor to request a data word from the I/O module and place it in
main memory at the location pointed to by the BAP. This is the lower priority IDR.

External
Interrupt
Request 4

Causes the Processor to request a status word 0 from the I/O module. The status
word provides the modules channel number and type code. This information is
used to construct a MAP table of all I/O modules in the system.

This event requests the processor to execute the next output chain instruction
located at the address pointed to by the output chain address pointer .

This event requests the processor to execute the next input chain instruction
located at the address pointed to by the input chain address pointer.

Causes the Processor to request an interrupt word from the I/O module. This event
is implemented in conjunction with the Class 7 EII event to provide the instruction
that is processed in the interrupt. This event is the lower priority EIR

Causes the Processor to generate a class III, priority 1 software interrupt. Used as
an error reporting mechanism by the I/O module.

Causes the Processor to generate a class III, priority 2 software interrupt. Used in
conjunction with the EIR event. This is the lowest priority class of event so that the
higher class EIR can load the memory with the interrupt information first.
Causes the Processor to generate a class III, priority 3 software interrupt. Used to
notify processor when a certain point is reached in a chain program. For example,
if the I/O module is ready to begin data transfer.
Causes the Processor to generate a class III, priority 4 software interrupt. Used to
notify processor when a certain point is reached in a chain program. For example,
if the I/O module is ready to begin data transfer.

Table 3. I/O Event Descriptions
36

I. DISCRETE AND SERIAL MODULE

The Discrete and Serial Module (DSM) is a Smart Input / Output module that

provides the AYK-14 with two interfaces to external equipment. One interface is a serial

multiplex input/output interface in accordance with MIL-STD-1553A/B. The other is a

16-bit input/output/discrete interface. The DSM is considered a ‘Smart’ I/O module

because it has the capability to execute chain instructions, to read and write directly to

memory, and to control the 1553 interface. All of the DSM’s interfaces are illustrated in

Figure 19.

Discrete and Serial
Module
(DSM)

1553 BUS A

1553 BUS B

16 Discrete Bus

XBUS

EMON

EBUS

Figure 19. Discrete and Serial Module Interfaces

1. DSM Personalities and Modes

The DSM can be configured to operate in different configurations in order to

provide flexibility and adaptability to the AYK-14. These configurations allow the 1553

portion of the DSM to perform like earlier I/O modules, specifically the SIM-A and SIM-

B. The DSM can be configured with three personalities that include the SIM-A, SIM-B,

and Alternate SIM-B. The SIM-A personality provides the capability to operate using the

1553A protocol. The SIM-B personality provides both the 1553A and 1553B protocol.

Finally, the alternate SIM-B adds additional restrictions concerning chaining operation in

addition to the 1553A/B capability. In every personality, the 1553 interface of the DSM

37

can operate in one of three modes, which include Self-test, Remote Terminal/Bus

Monitor, and Bus Controller. These modes define the role of the DSM within the 1553

bus architecture.

2. Smart I/O Operation

The two features of the DSM that distinguish it from other I/O modules and make

it a ‘Smart’ module are first, the ability to read and write directly to memory, and second,

the ability to execute I/O instructions. This capability provides a good deal of autonomy

to the DSM and greatly reduces the number of instructions that the VPM is required to

execute during any I/O operation. The DSM has the ability to execute most of the I/O

command and chain instructions in the VPM’s instruction set.

The initiation of operations on the DSM still requires the VPM to execute an

IOCR instruction. Once initiated, the DSM requests the command or chain instructions

directly from memory via an XBUS operation using its on-board Control Memory. The

on-board control memory is an important distinction between standard and smart I/O

modules. The presence of the information contained in the Control Memory on-board is

essential for the DSM to request and execute it’s own instructions. For example, in order

for the DSM to request a chain program instruction, it must have the Chain Address

Pointer (CAP), which indicates the address of the next chain instruction.

The DSM requests instructions from memory using a 16 bit local address formed

using information in the Control Memory. The adapter on the Master VPM then performs

an address conversion, using page set 0, to obtain the absolute address. If the address is

not located on the master VPM’s OBM, an MBUS operation can be used to transfer the

requested data to the master VPM and back to the requesting DSM. The DSM, therefore,

has the capability to reach any memory addressable by the VPM.

The DSM also has the same capability as standard I/O modules of executing

instructions sent as part of the command word over the XBUS. These commands are sent

when the VPM executes an I/O command instruction. They can be broadcast to all I/O

modules or addressed directly to an individual module and are used primarily to set or

clear I/O events. All of the XBUS commands that apply to the DSM are listed in Table 4.

38

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Broadcast
0 0 0 0 X X X X X X X X X X X X 1 1 0 1 1 1 0 1 Set Boot Enable
0 0 0 0 X X X X X X X X X X X X 1 1 0 1 1 1 0 1 CLR Boot Enable
0 0 0 1 X X X X X X X X X X X X 1 1 0 1 1 1 0 1 Bit Restart
X 1 1 0 0 0 0 0 X X X X X 0 0 0 1 1 0 1 1 1 X 1 Master CLR
X 1 1 0 0 0 0 0 X X X X X 1 0 0 1 1 0 1 1 1 X 1 Set EIE
X 1 1 0 0 0 0 0 X X X X X 1 0 1 1 1 0 1 1 1 X 1 CLR EIE
X 1 1 0 0 0 0 0 X X X X X 1 1 0 1 1 0 1 1 1 X 1 Set Class III Enable
X 1 1 0 0 0 0 0 X X X X X 1 1 1 1 1 0 1 1 1 X 1 Clear Class III Enable
1 1 1 0 1 0 1 1 X X X X X X X X 1 1 0 1 1 1 X 1 Set Map Event

Nonbroadcast
X X X X X X X X X X X X X X X X 0 1 0 0 P P P P Set XCMD Notice
X 1 1 0 0 0 0 0 X X X X X 0 0 0 1 X 0 0 P P P P Set CXMC Notice
1 1 1 0 1 1 1 1 X X X X 1 0 0 0 1 X 0 0 P P P P CLR Map Event
X 1 1 0 0 0 0 0 X X X X X 1 0 0 1 X 0 0 P P P P Set EIE
X 1 1 0 0 0 0 0 X X X X X 1 0 1 1 X 0 0 P P P P Clear EIE
X 1 1 0 0 0 0 0 X X X X X 1 1 0 1 X 0 0 P P P P Set Class III Enable
X 1 1 0 0 0 0 0 X X X X X 1 1 1 1 X 0 0 P P P P Clear Class III Enable
1 1 1 0 1 1 1 1 X X X X 0 1 0 0 1 X 0 0 P P P P CLR Class 2 DISC 0/4
1 1 1 0 1 1 1 1 X X X X 0 1 0 1 1 X 0 0 P P P P CLR Class 2 DISC 1/5
1 1 1 0 1 1 1 1 X X X X 0 1 1 0 1 X 0 0 P P P P CLR Class 2 DISC 2/6
1 1 1 0 1 1 1 1 X X X X 0 1 1 1 1 X 0 0 P P P P CLR Class 2 DISC 3/7
1 1 1 0 1 1 1 1 X X X X 1 0 0 0 1 X 0 0 P P P P CLR Class 4 DISC 0/4
1 1 1 0 1 1 1 1 X X X X 1 0 0 1 1 X 0 0 P P P P CLR Class 4 DISC 1/5
1 1 1 0 1 1 1 1 X X X X 1 0 1 0 1 X 0 0 P P P P CLR Class 4 DISC 2/6
1 1 1 0 1 1 1 1 X X X X 1 0 1 1 1 X 0 0 P P P P CLR Class 4 DISC 3/7
1 1 1 0 1 1 1 1 X X X X 1 1 0 0 1 X 0 0 P P P P CLR Class 7 DISC 0/4
1 1 1 0 1 1 1 1 X X X X 1 1 0 1 1 X 0 0 P P P P CLR Class 7 DISC 1/5
1 1 1 0 1 1 1 1 X X X X 1 1 1 0 1 X 0 0 P P P P CLR Class 7 DISC 2/6
1 1 1 0 1 1 1 1 X X X X 1 1 1 1 1 X 0 0 P P P P CLR Class 7 DISC 3/7

OPCODE a m FUNCTION CODE

Table 4. XBUS Commands – VPM to DSM

J. COMPUTER CONTROL UNIT

The Computer Control Unit (CCU) is a laboratory support unit that interfaces

with the AYK-14 via a maintenance support channel. It provides the ability to load

programs, display memory contents, set breakpoints and run software. The current

version of the support unit is an emulator of the original that can run on a PC using DOS.

The emulator (CCU/E) provides the same basic functional capabilities as the original

CCU.

The CCU provides an extremely useful interface for troubleshooting hardware

and software, or for gaining a better understanding of the AYK-14’s internal operations.

The software can be executed one instruction at a time (single-step) or run to a predefined

location. The contents of memory, including registers, control memory, and OBM, can be

39

displayed using appropriate commands. The contents of memory can be changed via

CCU commands as well in order to insert instructions to test hardware or debug software.

Because the CCU is connected to the AYK-14 through the Maintenance Support

Channel, all I/O channels are available for use in testing. The channels can be connected

to external hardware or connected to each other for testing.

40

III. DESIGN IMPLEMENTATION

Once the design has been sufficiently recovered to provide a detailed

understanding of the operation, the next step in the reengineering process is to begin the

forward engineering of the new design. The difficulty in beginning the forward

engineering process is deciding when the design has been adequately recovered. For a

design as complex as the AYK-14, the design recovery could continue to reveal new

aspects of the design almost indefinitely. However, once the design is thoroughly

understood, the forward engineering process will actually provide more insight into the

design than continuing with the design recovery. This is due to many factors including,

first, that during the forward design process you continually become aware of what you

do not know, which leads to more design recovery. And second, failures in the testing

and validation of the new design will reveal and highlight misunderstanding of the

recovered design.

This chapter will discuss the forward design process of the VPM adapter,

specifically, the implementation process for the recovered design.

A. FORWARD ENGINEERING PROCESS

1. Field Programmable Gate Array

The first step in the forward engineering process is to determine how the new

design is to be implemented. The target selected for this design was a Field

Programmable Gate Array. This target was chosen due to the advantages of designing

with FPGAs, specifically, the reduced time to develop and field products, the ability to

maintain an open architecture, and the ability to design an entire system on a chip. (Ref. 1

p.29)

The ability to design a system on a chip is a key advantage to using an FPGA for

this thesis. This is an advantage for two reasons. First, this thesis is the continuation of

CDR Mike Croskrey’s thesis (Ref. 1) in which he designed the processor module of the

VPM using an FPGA. The ability to design another module, the Adapter, and combine

the two designs into a larger system that can be re-implemented is a key advantage.

Second, because there will be additional designs that will need to be combined with this

41

design to finally reach the goal of reengineering the AYK-14, the FPGA provides the

means to continue to expand the system.

Another important advantage to using an FPGA is the ability to rapidly prototype

the new design. This is an advantage for reengineering because it provides the means to

incorporate aspects of the design that were not recovered until the testing phase. This is

essential in reengineering because there inevitably are aspects of the design that can not

recovered from even the most detailed documentation.

2. VHSIC Hardware Design Language (VHDL)

In generating designs to be implemented onto FPGAs, there are multiple methods

of describing the design dependant upon the software tools used for the design flow.

These methods can be divided into graphical, code, or a combination of both. The

graphical methods, such as schematic capture, provide a drag and drop approach which

allows vendor specific components to be connected to form a design. The behavior of

some of these components can be modified, and new components created, to allow

addition design flexibility.

The advantage of the graphical method is the visual layout that it provides

because it helps the user to visualize the ‘hardware’ being designed. Some of the

disadvantages to this method are the limitations on components based on the contents of

the vendor’s libraries, the inability to troubleshoot problems past the component or

‘black-box’ level, and lack of portability due to use of proprietary components. The lack

of portability is the most important problem with the graphical methods because one of

the goals of the reengineering process is an open architecture.

The code or programming method of describing a design has advantages and

disadvantages as well. The advantages include the ability to design from the most

primitive level and to modify the design at all levels of complexity. Another advantage is

the portability of design due to the standardization of the design languages. The primary

disadvantages of the programming approach are the difficulty visualizing the design due

to the abstract nature of the code and the requirement to understand how the code is

translated into a hardware implementation. An example of the difficulty of using software

to describe hardware is the sequential operation of most software (i.e. C++) programs

42

versus the concurrent operation of hardware. For this thesis, the programming approach

to hardware design was chosen for the advantages of portability, open architecture, and

the ability to modify the design at all levels of complexity.

The VHSIC (Very High Speed Integrated Circuit) Hardware Design Language

was used as the language to describe the design for implementation. VHDL is a hardware

description language that was developed by the Department of Defense and given to the

IEEE for standardization. It was designed to provide a language for describing hardware

with a wide range of descriptive capability that would be independent of technology or

design methodology.

3. FPGA Design Tools

The implementation of a design from a set of specifications through to hardware

operation follows a specific set of steps, or design flow. When the target of the design is

an FPGA, these steps are modified to include processes required to translate the design to

a form than can be loaded onto the targeted chip. Figure 20 (Ref. 8, p33) illustrates the

generic design flow in contrast to the FPGA specific design flow. The steps highlighted

in grey in Figure 20 require the use of software tools to be performed. In addition to

performing the necessary FPGA specific functions such as Map, Place, and Route, the

tools provide additional editing and simulating functions that provide assistance in

maintaining proper format and debugging code.

The reliance of the design process on software tools can cause difficulty and

inefficiency in the FPGA Design process. The first cause of difficulty can originate from

the functions that the software tools use to interpret the design and translate it into a form

that can be simulated and implemented. These steps are complex and can generate errors

that are often difficult to correct without a thorough understanding of the processes that

are taking place. Another cause of difficulty can be the abstract level of designing with a

hardware description language. Because the software tool creates the design from the

language description, it can be difficult to visualize the ‘hardware’ implementation of the

design. This, again, can cause difficulty in correcting errors in the design performance

based on simulation.

43

Get Specifications

Define Inputs and Outputs

Design Entry:
via Schematic / State Machine / VHDL

Functional Simulation of the Design

Map, Place, and Route to an FPGA

Timing Simulation of mapped Design

Download to FPGA on Design Board
using User Constraint File

Debug the Design using Logic Analyser

Get Specifications

Define Inputs and Outputs

Create Truth Tables

Derive Boolean Equations

Create Gate Level Design

Simulate Gate Level Design

Build Digital Circuit

Debug Digital Circuit

Generic Hardware
Design Flow

FPGA Specific
Design Flow

1

2

3

4

5

6

7

8

Figure 20. Hardware Design Flow

 In the process of implementing the design for this thesis, four FPGA Design

software tools were used. They included Xilinx Foundation, Xilinx ISE, ALDEC Active-

HDL, and Synplicity Synplify Pro. Multiple tools were utilized during the design process

to explore the advantages of each and to determine the most efficient method of getting

from design to implementation. The majority of this thesis was created and implemented

using Foundation primarily due to the author’s familiarity with the tool.

44

4. Finite State Machine Design

 The design of complex hardware using powerful tools such as VHDL requires a

methodology that allows extreme flexibility to meet varied requirements while providing

an efficient and repeatable technique. The methodology that is generally regarded as the

best way of meeting these goals is the Finite State Machine approach. In the finite state

machine approach, the behavior of the design is divided into discrete states. In each state,

the previous state and the input signals determine the next state. The values of all output

signals are determined by the current state and the input signals. The state machine

transitions from the current state to the next state based upon a synchronous signal or

clock. There are many different approaches to designing state machines using VHDL.

The method outlined in Reference 9 was used as the model for this thesis. Because of the

complexity of the recovered design and the modular approach to reengineering it, the use

of a very structured method to design the state machines was essential in order to create a

design that was clear, readable, and easy to modify.

Current State
Vector Register

(Process 2)

Next State
Conditioning Logic

(Process 1)

Output
Conditioning Logic

(Process 3)

Inputs

Outputs

Finite State Machine

Figure 21. Finite State Machine Structure [After Ref. 9]

45

In this method, the state machine is divided into three blocks as shown in Figure

21. The Next State and Output Conditioning Logic blocks are combinatorial. This means

that the outputs of these blocks change asynchronously based on the current state and

changes in the inputs. The Current State register, in contrast, retains current state

information and propagates next state information synchronously. This division of logic

provides a simple structure to use in creating the state machine.

The first step in this method is to define the inputs and outputs. It is essential in

this step to include all signals that can have any effect on or are affected by the

component being designed. This is a step that is often repeated during the design process

as the states and state transitions become more clearly defined.

The second step is to determine all of the possible states and state transitions. This

is done through the creation of a state diagram. The state diagram is a tool used to

illustrate the states and the state transitions in a logic format. It is an effective tool for

visualizing the operation of a design, especially when using an abstract method of design

description such as VHDL. Some of the software tools even have state machine editors

that help create code from a diagram and vice-versa. Examples of state diagrams for each

of the components designed are listed in Figures 26-30.

The third step is creating the three blocks of the state machine based upon the

input, outputs, states, and state transitions. Each of these blocks is created as an

individual process in VHDL. The first block is the Next State block (Process 1). This

block is combinatorial and is dependant upon the current state, inputs, and outputs. The

purpose of this process is to determine the next state that the state machine will transition

into on the next clock cycle. The second block is the Current State register (Process 2).

The purpose of this process is to advance the state machine to the next state, as

determined by the Next State process, synchronously and also to handle system resets.

The third block is the Output Conditioning block (Process 3). This block is also

combinatorial and is dependant upon the current state and the inputs. The purpose of this

block is to determine the outputs of the state machine.

46

5. Modular Approach to Overall Design

A modular approach was taken in the reengineering of the adapter because of the

advantages of the combination of the State Machine method of hardware design along

with the capability of VHDL to combine smaller components into a larger design. This

approach allowed the design to be broken down into smaller, simpler designs based upon

functionality. It also allowed the reusability of components and code to help make the

design more understandable and easier to modify, much like the advantages to an object

oriented approach in software design.

This modular approach also takes advantage of the rapid prototyping benefit of

using FPGAs. This is done by adding functionality to the design simply through the

addition of new components. The new design can quickly be tested at both the simulation

level and actual hardware implementation level. The advantage here is that the design

does not need to be completely defined early in the design process and that testing can

continually be done to provide feedback and changes to the design. This is critical in the

reengineering process since the goal is a design that has the same functionality as the

replaced design, and therefore must be tested versus the original design’s performance.

As an example, in the adapter design, the memory interface was designed and tested as

the first component. As additional components were created, they were tested

individually and then in combination with the memory interface. This method allowed

efficient and reliable detection of design errors.

B. TARGET FOR DESIGN IMPLMENTATION

The goal of the FPGA design process is to implement the design and load it onto a

development board for testing and design validation. The three primary factors that were

used in choosing a platform to economically implement this design were FPGA size,

number of input / output ports, and memory capabilities. The development board chosen

for this thesis was the Xilinx Virtex-E FPGA Development Kit from AVNET Design

Services. The functional layout of the development kit is illustrated in Figure 22 (Ref.

10).

The FPGA used on this development kit is the Xilinx Virtex-E XCV1000E-

6FG1156. The first reason this FPGA was selected is due to the author’s experience and

47

familiarity with Xilinx FPGAs and Xilinx design software products. As previously

mentioned, a thorough understanding with the software tools is critical to efficient FPGA

design. A second reason for selection of this FPGA was the size of the chip in terms of

number of logic gates as well as the number of off chip ports and chip speed. The Virtex-

E XCV1000 has over 1,000,000 logic gates and 512 assignable off-chip ports, and is

capable of operating at speeds as high as 200 MHz. The number of logic gates and the

maximum operating frequency meet or exceed the capabilities of the targeted FPGA used

in CDR Croskrey’s design (Ref. 1, p34-36.) The XCV 1000 is therefore considered to

have the additional capability available to expand the design to include the adapter

control and interface. The number of available off chip ports (512) far exceed the number

of required adapter Input / Output lines (152) which provides additional ports for the

output of critical internal data and control signals for testing and troubleshooting.

Figure 22. VIRTEX-E Development Board Functional Layout

The Virtex-E development board is configured with a 64-bit wide data bus for use

of both on-board Flash and SDRAM memory. Common data and address buses are used

to connect the FPGA with both Flash and SDRAM as well as I/O memory connectors.

The SDRAM has a capacity of 64 Mbytes and the Flash has a capacity of 32 Mbytes.

This memory configuration has both advantages and disadvantages for the

implementation of this design. The first advantage is that the size of the memory is
48

sufficient to cover the entire OBM of the targeted design in either Flash or SDRAM. The

second advantage is that the memory I/O connectors provide the means to either expand

the memory capability or monitor memory activity. A disadvantage to the memory

configuration is the use of SDRAM with no associated SDRAM controller. In order to

use the SDRAM, a controller had to be designed and implemented to interface with the

overall project design. The SDRAM also has latencies associated with reads and writes

for non-sequential memory accesses. These disadvantages can be overcome with the

addition of a cache memory component to make more efficient use of the existing

memory configuration. However, the cache design is left to future students continuing on

the implementation of the AYK-14.

C. COMPONENT DESIGN DESCRIPTION

The functions of the adapter were broken down into components, based upon

function, in order to simplify the state machine design process and to enable reuse of

code rather than duplication of effort. The components that make up the design are

illustrated in Figure 23. The VHDL code for each component discussed is listed in

Appendix E.

49

Event Bus Controller
evt_fsm.vhd
evt_pckg.vhd

Processor
(IEP)

Address Selector
add_select.vhd

Memory Arbitrator
mem_arbitrator.vhd

SDRAM
Controller

SD_ctrl.vhd
SDRAM

MBUS Controller
mbus_controller.vhd

grant_logic.vhd

XBUS Controller
xbus_controller.vhd

grant_logic.vhd

MBUS

XBUS

EMON

EBUS

Existing
Components

Components developed
by this research

Figure 23. Adapter Design Components

1. SDRAM Controller

The memory available on the Virtex-E development board consists of Flash and

SDRAM as outlined previously. The SDRAM was targeted to be used as the on board

memory for the adapter design. A brief summary of the operation of this type of memory

is presented in order to clarify the requirements of an SDRAM controller.

Synchronous Dynamic Random Access Memory (SDRAM) is a form of memory

that is termed dynamic because it requires recharging or refreshing of its memory

contents periodically, and termed synchronous because all signals are registered on the

positive edge of the input clock signal. The components that make up the memory units
50

in an SDRAM consist of capacitors and transistors and the capacitors require recharging

because they lose their charge when they are accessed or due to leakage over time. The

development board uses four Micron 256 Mb Chips MT48LC16M16A2, each of which is

internally configured as four 67,108,864-bit banks organized as 8,192 rows by 512

columns by 16 bits (Ref. 11). Based on this configuration each memory location,

consisting of 16 bits, is defined by a bank, row, and column. Read and write accesses are

burst oriented which allows sequential memory locations to be accessed in lengths of 1,

2, 4, or 8 locations. The internal SDRAM control logic maintains a loadable mode

register that sets certain mode operation constraints. A functional block diagram of a

single 256Mb SDRAM is illustrated in Figure 24. It should be noted that there are only

13 address lines because they are used for addressing either the column or the row

depending upon the control signals present.

Figure 24. SDRAM Functional Block Diagram

51

The complexity of SDRAM operation requires a memory controller to be used in

order to meet all the maintenance requirements of the chip including precharging before a

memory access, periodic refreshing of all memory locations, and providing the control

signals to read or write to memory. This allows memory accesses to be treated as

independent of the memory source when creating the other components that require

access to memory. This method also provides the capability to expand the design in the

future to include a cache to increase system performance.

Due to the complexity required in the design of an SDRAM controller and the

time constraints of the design process, the design for the SDRAM controller was adapted

from existing designs. The design that was ultimately selected was the XSA SDRAM

controller from the XESS Corporation. The original design for this controller was written

in VHDL and targeted to a different development board. It was modified and tested to

operate with the SDRAM configuration on the Virtex-E development board. The

controller interface is illustrated in Figure 25.

52

Figure 25. SDRAM Controller Interface

2. Memory Arbitrator

The Memory Arbitrator is the component that provides the interface between each

memory user and the SDRAM controller. The three possible users of memory are the

Processor, the XBUS, and the Memory Bus. The Arbitrator monitors requests for

memory from the three users and grants use based on a rotating priority scheme. The

scheme is based on the rotating scheme as described in MBUS arbitration. The rotation

scheme insures that each component is allowed memory use at least one out of every

three memory accesses. The priority is based upon the current user, the last user, and the

users requesting access. The default priority is the Processor, the XBUS, and then the

MBUS based upon the expected frequency of use.

The design is based on the three-process State Machine method previously

discussed. The priority in each state is accomplished using if-then statements. Because

53

these statements are executed sequentially, levels of priority can be assigned through the

order of the statements. Using this method, each state had a different order of priority of

the two remaining states. The state diagram is shown in Figure 26. The following

description of State Diagram symbology applies to all state diagrams shown in this thesis.

The names used in the state diagram are intended to reflect the names of the states

and signals used in the VHDL code. The words attached to each arrow indicate the

signals that are required to be true in order for the state transition to occur. If a signal is

asserted low, the signal name will have a ‘_L’ appended to it. If the condition to be met

for transition is that a signal is NOT asserted, the signal name will be enclosed in

parentheses. The boxes next to certain states contain the signals that are driven while in

that state. The ampersand symbol (&) is used to indicate a logical AND of conditions to

be met for signal transition.

54

IDLE

P

X
M

X_REQ &
 (P

_REQ)

P_R
E

Q

M_REQ & (X_REQ) & (P_REQ)
(P_REQ) &
(X_REQ) &
(M_REQ)

(M_DONE)

(M_DONE)
(M_DONE)

M
_D

ONE &
X_R

EQ

M
_DONE &

 M
_REQ &

 (X_REQ)

M
_D

O
N

E
 &

 (M
_R

E
Q

) &
(X

_R
E

Q
)

M
_D

ONE &
 P

_R
EQ &

 (M
_R

EQ)
M

_DONE &
 P_REQ

M_DONE &
 (P

_R
EQ) &

 (M
_REQ)M_DONE & (P_REQ) & (X_REQ)

M_DONE & X_REQ & (P_REQ)

M_DONE & M_REQ

Figure 26. Memory Arbitrator State Diagram

3. MBUS Controller

The MBUS controller is the component that controls the Memory Bus interface

between the processor, external users, and on board memory. Its primary function is to

operate the bus control signals required by the MBUS protocol. This protocol includes all

required control signal, timing requirements, parity generation, and error detection. It

requests use of the on board memory for reads or writes by external bus users. It also

operates as the MBUS arbitrator by determining the priority user and granting usage of

the bus.

55

IDLE

REQ_M

ACK_WRITE_M ACK_READ_M

RSM_WRITE_M RSM_READ_M

ERROR_Internal

M
_G

R
AN

T_PR
O

C

M_ACK_L & P_RD_REQM_ACK_L & P_WR_REQ

M
_R

ES_L

M
_R

ES_L

Signal Driven
M_Bus

MSB_PARITY
LSB_PARITY

M_ADRS_PARITY:1
CMD_PARITY
MSB_WRITE_L
LSB_WRITE_L

THREE_TWO_DATA
IPL_WRITE

BUS_ERR_IN_L

Signals Driven
M_BSY_OUT_L

(MBUS)
(M_REQ_OUT)
(MSB_PARITY)
(LSB_PARITY)

(M_ADRS_PARITY:1)
(CMD_PARITY)

Signals Driven
P_Mem_Done
(M_BUSY_L)

(M_ACK_L)

Bus Tim
e O

ut & (M
_ACK_L)

Signals Driven
M_BSY_OUT_L

MBUS

Signals Driven
(MBUS)

(WRT_LSB_L)
(WRT_MSB_L)

(M_BSY_OUT_L)

(M_ACK_L)

(M_DESIRE_IN) &

(M_GRANT_OUT)

Slave Operations

Data_Clk_In_M
Signals Driven
P_DATA_RDData_Clk_Out_M

Signals Driven
(M_REQ_L)

Addr_Valid

Signals Driven
M_REQUEST_L

MBUS

Figure 27. MBUS Controller State Diagram (Master)

56

ACK_READ_S

IDLE

REQ_WRITE_S

AddClkIn_Write_S

RSM_WRITE_S
RSM_READ_S

ERROR_
External

M
_G

RA
NT

_E
XT

 &
 M

_R
EQ

_L
 &

M
BU

S(
in

 O
BM

) &
M

SB
_W

RI
TE

_L
 &

LS
B_

W
RI

TE
_L

&
 (P

ar
irt

y_
Er

ro
r)

(M
_R

EQ
U

EST_
L)

Signal Driven
S_BUSY_OUT_L

Signals Driven
S_BUSY_L

Signals Driven
M_RESUME_L
(Mem_WR_Req)

Signals Driven
BUS_ERR_L

(M
_D

ES
IR

E_
L)

REQ_READ_S

M
_G

RA
N

T_EX
T &

 M
_REQ

_L &

M
BU

S(in O
BM

) &
(M

SB_W
RITE_L)

&
 (LSB_W

RITE_L) &
(Parity_Error)

M
_G

R
A

N
T_EX

T &
 M

_R
EQ

_L &
 M

B
U

S(in O
B

M
)

&
 PA

R
ITY

_ER
R

O
R

Master Operations

ACK_WRITE_S

AddClkIn_Read_S

Signals Driven
MBUS

MSB_PAR_OUT_L
LSB_PAR_OUT_L

Signals Driven
Mem_Addr

Signals Driven
Mem_Addr

Mem_RD_Req

M
em

_D
one

(M
_R

EQ
EST_L)

Signals Driven
M_RESUME_L

READ_DONE_S

(M
_B

U
SY

_
L)

Signals Driven
MBUS <= Z

(M_RESUME_L)

Signals Driven
Mem_Data_WR
Mem_WR_Req

WRITE_DATA_S

M
em

_
D

one

WRITE_DONE_S

(M
_B

U
SY

_
O

U
T)

Signals Driven
(M_RESUME_L)

Figure 28. MBUS Controller State Diagram (Slave)

The design is based on the three process state machine previously discussed.

There are four basic types of operation that can occur on the MBUS. The first two are

either a read or a write by the processor and the second two are either a read or write by
57

an external user. The state diagram for the controller is illustrated in Figures 27 and 28.

The diagram was split into two figures for clarity of state flow with the Idle state serving

as a common State between the Figures. Figure 27 illustrates the states for bus usage by

the processor and Figure 28 illustrates bus usage by an external user.

The MBUS Controller design has two components included to provide MBUS

usage arbitration and parity generation. The component Grant Logic performs the bus

arbitration in a rotating priority scheme. It is a three process state machine with priority

logic similar to the Memory Arbitrator. The function of arbitration was accomplished

using a component in order to facilitate design reuse. The component OddParityGen is an

odd parity generator used to generate parity for transmission or for comparison with

received parity to provided error detection.

4. XBUS Controller

The XBUS controller is the component that controls the XBUS interface between

the processor, external users, and on board memory. Its primary function is to operate the

bus control signals required by the XBUS protocol. It requests the use of on board

memory for reads and writes by external users. It also operates as the XBUS arbitrator by

determining the priority user and granting usage of the bus.

The design is based on the three process state machine previously discussed. The

XBUS operation was divided into three basic types of operation, output, input, and

broadcast. The users were also divided into two groups, the processor and the external

users. The state diagram for the controller is illustrated in Figures 29 and 30. The diagram

was split into two figures for clarity of state flow with the Idle state serving as a common

State between the Figures. Figure 29 illustrates the states for bus usage by the processor

and Figure 30 illustrates bus usage by an external user.

The XBUS controller has a component included to provide bus user arbitration.

The component X_GRANT_LOGIC performs the arbitration in a rotating priority

scheme similar to the Memory Arbitrator component. This component ensures each users

has control of the bus at least once every seven uses (there are seven users of the XBUS).

58

IDLE

Req_Proc_Write

(X_A
C

K
_IN

_L) &
 (X_R

ES_IN
_L) &

X_G
R

A
N

T_PR
O

C
 &

 C
M

D
(17) &

(C
M

D
(19))

Signals Driven
X_BUS (CMD)

X_REQ_L

Ack_Proc_Write

X_A
C

K
_L

Signals Driven
(X_REQ_L)

X_BUS(Data)

Rsm_Proc_Write
Signals Driven
(X_BUS(Data))

(X_RES_L)

Req_Proc_Read

Ack_Proc_Read

X_A
C

K
_L

Rsm_Proc_Read

X_R
ES_L

(X_A
C

K
_IN

_L) &
 (X_R

ES_IN
_L) &

X_G
R

A
N

T_PR
O

C
 &

 (C
M

D
(17)) &

(C
M

D
(19))

Signals Driven
X_BUS (CMD Word)

X_REQ_L

Signals Driven
(X_REQ_L)

(X_BUS)

Signals Driven
P_Data_Out

(X_RES_L)

Proc_Bdcst

X
_R

E
Q

_L
 &

X
_B

U
S(19)

(X
_D

E
SI

R
E

_L
)

Read_WaitWrite_Wait

X_R
ES_L

DSM Operation

Figure 29. XBUS Controller State Diagram (Processor)

59

IDLE

Signals
Driven

X_ACK_L
Mem_ADDR

Mem_RD_Req

ACK_DSM_WRITE

W
R

IT
E

_
T

IM
E

R

Mem_Done &
(X_DESIRE_L)

REQ_DSM_READ

ACK_DSM_READ

M
em

_D
one

X
_R

E
Q

_L
 &

 X
_B

U
S(20-23) &

(X
_B

U
S(19)) &

 (X
_B

U
S(17))

Signals Driven
X_BUS

(X_ACK_L)
X_RES_L

(X_DESIRE_L)

DSM_BDCST

X
_R

E
Q

_L
 &

X
_B

U
S(19)

REQ_DSM_WRITE

X
_R

E
Q

_L
 &

 X
_B

U
S(20-23) &

(X
_B

U
S(19)) &

 X
_B

U
S(17)

Signals Driven
(X_ACK_L)
X_RES_L

Mem_ADDR
Mem_Data_WR
Mem_WR_Req

(X
_D

E
SI

R
E

_L
)

Addr_ClkIn_DSM_
Write

Data_ClkIn_DSM_
Write

Addr_ClkIn_DSM_
Read

Data_ClkOut_DSM_
Read

Signals
Driven

X_ACK_L

Processor Operation

Figure 30. XBUS Controller State Diagram (DSM)

5. Event Bus Controller

The Event Bus Controller is the component that determines the highest active

event using the event polling sequence on the Event and Event Monitor busses. It also

generates the Event vector to notify the processor of the highest active event. The design

was based on the three process state machine. It requires a timer in order to meet the

Event bus protocol. The timer logic is based upon the operating frequency of the intended

design. If the design is targeted to a faster clock frequency, only one constant needs to be

60

updated in the design to allow the component to continue to meet the timing constraints.

The state diagram for the Event Bus Controller is illustrated in Figure 31.

Idle

Class_Req

Group_Req

Discrete_Req

(E_BUS)

E_BUS

E_B
US =

 1
or

 2
or

 4
or

 7

&
 C

lk
_C

ou
nt

E_BUS = 0 or 3 or 5 or 6
& Clk_Count

Clk_Count

Cl
k_

Co
un

t

(Clk_Count)(Clk_Count)

(Clk_Count)

Figure 31. Event Controller State Diagram

6. Top Level Design Interface

The Top Level Design Interface is simply the component that combines all of the

previous components into a single entity. It connects all of the components, including the

Processor, via internal signals as shown in Figure 23. It also connects all of the

appropriate signals to input or output ports.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

IV. CONCLUSIONS

There were three primary goals that this thesis set out to achieve. The first was the

reengineering of the adapter module on the VPM of the AYK-14. This goal was a

milestone toward the larger goal of validating the theory that a binary compatable

processor, designed using FPGA technology, would be a viable solution to deal with the

growing legacy avionics problem in the Department of Defense. In terms of this second

goal, this thesis attempted to continue the process of reengineering the processor begun

with CDR Croskrey’s work in his Master’s thesis. The third goal of this thesis was to

create a reference that summarized the operation of the AYK-14 emphasizing VPM to

I/O module communication.

 In terms of this first goal, this thesis succeeded in the reengineering process to the

level of simulating a design whose performance matched the operation of the VPM

adapter based upon design documentation. It should be stressed that this performance

comparison is based on performance descriptions and diagrams from the design

documentation. This is stressed because an important lesson learned was the need for

actual hardware for use in testing early in the design recovery process.

The reason for this requirement for hardware is the difficulty in recovering a

design from documentation alone. There was a large amount of documentation available

for the AYK-14. However, due to the AYK-14’s complexity, age, and numerous

upgrades over its lifecycle, the documentation did not cover every aspect of the design to

the level required for a complete design recovery. An AYK-14 was available with a

CCU testing unit during the early stages of the design recovery but due to the complexity

of the CCU interface, it did not provide useful information until the design was more

clearly understood. The testing that was needed to aid in the design and validate the

simulated design was a sampling of all bus operation using a logic analyzer.

In terms of the second goal, this thesis demonstrated that a complex design could

be recovered and reengineered using the tools available to design FPGAs.

63

The third goal of this thesis was accomplished as a byproduct of the design

recovery process. The difficulty in creating a summary of the AYK-14 operation without

full and detailed testing is that the summary is only as valid as the documentation it was

taken from. However, because of the numerous and varied sources of information, this

document will at least serve as a starting point for a more detailed study. It will also

clarify concepts regarding the I/O system that are difficult to understand without a

detailed understanding of AYK-14 operation.

64

APPENDIX A: DOCUMENTATION LIST FOR THE AYK-14

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX B: DIRECT AND POLLED EVENTS

Event Class
Discrete Event Description

Event Class 0
Discrete 0 Internal power down/power fail
Discrete 1 External power down
Discrete 2 Internal PCM thermal/thermal fault
Discrete 3 External PCM thermal
Discrete 4 MBUS timeout
Discrete 5 XBUS timeout
Discrete 6 Embedded power fail
Discrete 7 -

Event Class 1
Discrete 0 Even channel RTCMD
Discrete 1 Even channel ODR
Discrete 2 Even channel IDR
Discrete 3 -
Discrete 4 Odd channel RTCMD
Discrete 5 Odd channel ODR
Discrete 6 Odd channel IDR
Discrete 7 -

Event Class 2
Discrete 0 Even channel UCR/restart
Discrete 1 Even channel EIR
Discrete 2 Even channel ODR
Discrete 3 Even channel IDR
Discrete 4 Odd channel UCR
Discrete 5 Odd channel EIR
Discrete 6 Odd channel ODR
Discrete 7 Odd channel IDR

Event Class 3
Discrete 0 Microevent 1/stop
Discrete 1 Watchdog timer
Discrete 2 File multiple bit error
Discrete 3 PA event/SIOP & ERI
Discrete 4 CCU event
Discrete 5 PB event/SYNC & IOCR & EII
Discrete 6 External interrupt event 2
Discrete 7 External Stop/step/run

67

Event Class
Discrete Event Description

Event Class 4
Discrete 0 Even channel MAP
Discrete 1 Even channel OCR
Discrete 2 Even channel ICR
Discrete 3 Even channel EIR
Discrete 4 Odd channel MAP
Discrete 5 Odd channel OCR
Discrete 6 Odd channel ICR
Discrete 7 Odd channel EIR

Event Class 5
Discrete 0 Recoverable error
Discrete 1 Operand memory error
Discrete 2 Instruction memory error or MCM parity fault
Discrete 3 Hardware fault warning
Discrete 4 External interrupt event 3
Discrete 5 Microevent 0
Discrete 6 Hardware fault (BIT error)
Discrete 7 Module overtemp event

Event Class 6
Discrete 0 Memory protect fault
Discrete 1 RTC lower overflow
Discrete 2 Monitor clock overflow
Discrete 3 -
Discrete 4 System reset
Discrete 5 Initial program load
Discrete 6 External event 0/IPI 0
Discrete 7 External event 1API 1

Event Class 7
Discrete 0 Even channel ERI or microevent 2
Discrete 1 Even channel Ell
Discrete 2 Even channel OCI
Discrete 3 Even channel ICI
Discrete 4 Odd channel ERI
Discrete 5 Odd channel EII
Discrete 6 Odd channel OCI
Discrete 7 Odd channel ICI

68

APPENDIX C: I/O INSTRUCTIONS

COMMAND CHAIN INSTRUCTIONS
Mnemonic Hex Instruction

ACR EO 0 0 CHANNEL CONTROL Master clear all channels

ACR4 E004 CHANNEL CONTROL Enable external 4 interrupts, all channels
CCR0,4

ACR5 EO 0 5 CHANNEL CONTROL Disable external interrupts, all channels
CCR0,5

ACR6 EO 0 6 CHANNEL CONTROL Enable class III interrupts, priorities 2,3,4
CCR0,6

ACR6 EO a 6 CHANNEL CONTROL Enable class III interrupts, priorities 2,3,4
CCRa,6 for channels with priority less than channel a

ACR7 EO 0 7 CHANNEL CONTROL Disable class III interrupts, priorities 2,3,4
CCR0,7

ACR7 EO a 7 CHANNEL CONTROL Disable class III interrupts, priorities 2,3,4
CCRa,7 for channels with priority less than channel a

CCRa,12 EO a C CHANNEL CONTROL Enable channel a external interrupts

CCRa,13 EO a D CHANNEL CONTROL Disable channel a external interrupts

CCRa,14 EO a E CHANNEL CONTROL Enable channel a,class III, priorities 2,3,4

CCRa,15 EO a F CHANNEL CONTROL Disable channel a, class III; priorities 2,3,4

CCRa,8 EO a 8 CHANNEL CONTROL Master clear channel a

69

COMMAND INSTRUCTIONS
Mnemonic Hex Instruction
ICKa,y E6 a 2 INITIATE INPUT CHAIN Y->Channel
 a Chain Pointer; initiate input chain

OCKa,y E6 a 6 INITIATE OUTPUT CHAIN Y->Channel
 a Chain Pointer; initiate output chain

TOCKa,y,m E6 a F INITIATE OUTPUT CHAIN Y is
 chain table pointer; initiate tabular output chain

RIMa,y,m EB a m READ CONTROL MEMORY Channel
 a (CMm)->Y

SICRa,m F8 a m SET AND CLEAR DISCRETES Set
 or clear channel a discrete function

SIOPm,y FC - m START SLAVE m:0->EIOP/slave
 VPM/slave SCP SR1:12,Y->EIOP/slave VPM/
 slave SCP P if m=0 or 1

SSTa,y,m FB a m STORE STATUS Channel a status
 bits per m->Y

WIMa,y,m E7 a m WRITE CONTROL MEMORY (Y)->
 Channel a CMm

XIMa,y,m FE a m EXCHANGE CONTROL MEMORY Channel
 a (CMm)->Y;(Y+1)->Channel a CMm
 rf m=2 or 6. If m#2or6,1/O instruction fault.

70

COMMAND CHAIN INSTRUCTIONS
Mnemonic Hex Instruction
BJm,y FD - m BIT JUMP Y->CAP if(CM3):m=1

CSIRm F8 0 m SERIAL INTERFACE CONTROL Set
 or clear discrete function

CSSTy,m FB - m STORE STATUS Status bits per m->Y

HCR EC 0 0 HALT CHAIN Halt chaining, a even

IMa,y,m E2 a m INITIATE MESSAGE Y->CMm;
 initiate message activity

IOa,y E3 a 0 10 FUNCTION a (Y<Y+1)->BCW,BAP;
 initiate transfer

IPR EC1 0 INTERRUPT PROCESSOR Generate
 chain interrupt, a odd

LCM m,y E7 0 m LOAD CONTROL MEMORY (Y)->CMm

LCMKm,y E6 0 m LOAD CONTROL MEMORY Y->CMm

SCMm,y EB 0 m STORE CONTROL MEMORY (CMm)->Y

SFy EF 1 0 SET FLAG 1->y:15,14, a odd

SFSCm F4 0 m SEARCH FOR SYNC Perform
 function(s) assigned to m-bits

SJMCa,y F2 a 0 SERIAL JUMP ON MET CONDITION Y->CAP

XCMm,y FE - m EXCHANGE CONTROL MEMORY (CMm)->Y;
 (Y+1)->CMm

ZFy EF 0 0 ZERO FLAG 0->Y:15,14, a even

71

THIS PAGE INTENTIONALY LEFT BLANK

72

APPENDIX D: XBUS COMMAND WORDS

The first section of Appendix D describes the processor to I/O channel interaction on the
XBUS (I/O Bus) for various I/O software instructions. Each software instruction is listed
along with the associated XBUS activity directed to the I/O channel.

Notes:
1. For I/0 channels, bits 17-23 of the IOBUS are defined only during the CONTROL
portion of the cycle. Bit 16 is as shown in the table during the CONTROL time, and is
driven to a logic 0 by the I/0 module during the DATA portion of the IOBUS cycle

2. For I/0 channels, IOBUS bit 18 is always a logic 0. It must be decoded.

3. For I/0 channels, IOBUS bit 19 is a logic 0 for all non-"BROADCAST"
operations.

4. On the IOBUS, complement polarity is used so that a logical 1 is represented by a
ground potential.

5. The values shown in this table are logic true values.

6. An "x" in the value for XC or XO implies that those bits are indeterminate and the
I/0 hardware shall not decode them.

7. The hardware bit-numbering scheme is used in this table (bit 0 = MSB).

8. The comment "Accept data word (XO)" simply implies that the I/0 channel must
respond with X-Acknowledge and X-Resume signals. The data is not necessarily used.

9. The value (yyyy) refers to the contents of the memory location whose address is
yyyy.

10. The "Priority Number" is:

1. The priority number of the chain program being executed in the case of a
chain command, or

2. The priority number of the channel whose logical number is "a" in the case of
a command cell.

11. A "command cell" refers to the locations accessed by the IOCR instruction (60,
61, 62, and 63 hex).

12. For I/0 channels, IOBUS bits 19-23 will be logical 1's for broadcast operations
and these must be decoded before responding. It is not sufficient to simply decode bit 19
to determine if a broadcast operation is occurring. No X-Acknowledge or X-Resume
signals shall be generated by the I/0 for broadcast operations.

73

13. Bit 0 (MSB) of all software instructions sent to the I/0 module, which are
executed from an input chain program, will be forced to a logic 0 value." For example:
The FBxX (Store Status) instruction would be received by the I/0 module as 7Bxx if the
instruction was executed out of an input chain program.

74

75

76

77

78

79

80

81

82

83

84

The second section of Appendix D describes XBUS interaction between the processor
and I/O module in response to a particular raised event. All events and their associated
XBUS activity are presented

Notes:
1. For I/0 channels, bits 17-23 of the IOBUS are defined only during the CONTROL
portion of the cycle. Bit 16 is as shown in the table during the CONTROL time, and is
driven to a logic 0 by the I/0 module during the DATA portion of the IOBUS cycle

2. For I/0 channels, IOBUS bit 18 is always a logic 0. It must be decoded.

3. For I/0 channels, IOBUS bit 19 is a logic 0 for all non-"BROADCAST"
operations.

4. On the IOBUS, complement polarity is used so that a logical 1 is represented by a
ground potential.

5. The values shown in this table are logic true values.

6. An "x" in the value for XC or XO implies that those bits are indeterminate and the
I/0 hardware shall not decode them.

7. The hardware bit numbering scheme is used in this table (bit 0 = MSB).

8. The comment "Accept data word (XO)" simply implies that the I/0 channel must
respond with X-Acknowledge and X-Resume signals. The data is not necessarily used.

9 For I/O channels, XBUS bits 20-23 contain the priority number of the channel.

10. A “K” represents the priority number of the channel that generated the event.
“K*E” represents the priority number obtained by forcing the LSB of K to a zero.

11. Unless otherwise stated, all XBUS activity occurs for the channel whose event is
being serviced.

12. “BCW*” is bits 04-15 of CM-0 or CM-4

13. “CM-n” is Control Memory word n.

85

86

87

88

89

90

91

92

93

94

95

96

97

 98

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

APPENDIX E: VHDL SOURCE CODE

Hirearchy Of Souce Code

Adapter_top.vhd

Mbus_controller.vhd

Sdramcnt.vhd

Xbus_controller.vhd

evtfsm.vhd

xs_pckg.vhd

Add_select.vhd

Odd_parity.vhd
Grant_logic.vhd

X_grant_logic.vhd

Xs_pckg.vhd

Xs_pckg.vhd

Xs_pckg.vhd

Level IIILevel IILevel I

101

===
 Memory Arbitrator <Mem_Arbitrator.vhdl>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: Memory Use Arbitrator
 Description: Sate Machine which provides a rotating access scheme to
 provide access to the on chip memory to all users,
 specifically the Processor, the Xbus, and the Mbus.

 Author: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 30 August 2002
 Modified: 6 November 2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Synplify Pro 7.1
 Notes:

 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;

entity mem_arbitrator is

 generic(
 DATA_WIDTH: natural := 32;
 ADDR_WIDTH: natural := 23
);
 port (
 Clk: in std_logic;
 RST: in std_logic;
 --Signals from SDRAM Controller
 Mem_Done: in std_logic;

-- Memory Available signal from SDAM Ctr

102

 RD: out std_logic;
 WR: out std_logic;
 hAddr: out std_logic_vector(ADDR_WIDTH-1 downto 0);
 hData_In: out std_logic_vector(DATA_WIDTH-1 downto 0);

--Out TO SDRAM
 hData_Out: in std_logic_vector(DATA_WIDTH-1 downto 0);

--In FROM SDRAM
 --Signals from Processor
 P_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0);

-- Memory Address In
 P_Data_In: in std_logic_vector(DATA_WIDTH-1 downto 0);
 P_Data_Out: out std_logic_vector(DATA_WIDTH-1 downto 0);
 P_Mem_Done: out std_logic;
 P_RD: in std_logic;
 P_WR: in std_logic;
 --Signals from MBus
 M_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0);

-- Memory Address In
 M_Data_In: in std_logic_vector(DATA_WIDTH-1 downto 0);
 M_Data_Out: out std_logic_vector(DATA_WIDTH-1 downto 0);
 M_Mem_Done: out std_logic;
 M_RD: in std_logic;
 M_WR: in std_logic;
 --Signals from XBus
 X_Addr_In: in std_logic_vector(ADDR_WIDTH-1 downto 0);
 -- Memory Address In
 X_Data_In: in std_logic_vector(DATA_WIDTH-1 downto 0);
 X_Data_Out: out std_logic_vector(DATA_WIDTH-1 downto 0);
 X_Mem_Done: out std_logic;
 X_RD: in std_logic;
 X_WR: in std_logic

);

end mem_arbitrator;

architecture behavioral of mem_arbitrator is

constant Addr_Z: Std_Logic_Vector(ADDR_WIDTH-1

downto 0):="ZZZZZZZZZZZZZZZZZZZZZZZ";

type statetype is (
 Idle, -- Idle state when no entity is requesting Memory
 P, -- State when Processor has control of Memory
 X, -- State when Xbus has control of Memory
 M -- State when Mbus has control of Memory

103

);

signal curr_state, next_state : statetype ;
signal P_REQ,M_REQ,X_REQ : std_logic;

begin

P_REQ <= P_RD or P_WR;
M_REQ <= M_RD or M_WR;
X_REQ <= X_RD or X_WR;

--Process to determine next state

nxtStProc:
 process (P_REQ,M_REQ,X_REQ,curr_state,Mem_Done,P_RD,P_WR,

M_RD,M_WR,X_RD,X_WR,next_state)

begin

 case curr_state is
 when Idle =>
 if P_REQ = '1' then --First If statements determine if any user wants memory
 next_state <= P;
 elsif X_REQ = '1' then
 next_state <= X;
 elsif M_REQ = '1' then
 next_state <= M;
 else
 next_state <= Idle;
 end if;

 case next_state is
--As soon as the highest priority user is determined from statements above, the RD or
WR signal is sent to the SDRAM controller

 when Idle =>
 RD <= '0';
--This is to ensure that the SDRAM controler goes to the RW state on the following clock
 WR <= '0';
 when P =>
 RD <= P_RD;
 WR <= P_WR;
 when X =>
 RD <= X_RD;
 WR <= X_WR;
 when M =>

104

 RD <= M_RD;
 WR <= M_WR;
 when others =>
 null;
 end case;

 when P =>

 if Mem_Done = '0' then
 --Each state remains in that state until the Mem_Done signal indicates that memory
is available
 RD <= P_RD;
 WR <= P_WR;
 next_state <= P;
 elsif Mem_Done = '1' then
--The next state priority is determined by the order of the if statements
 if X_REQ = '1' then
 next_state <= X;
 elsif M_REQ = '1' then
 next_state <= M;
 else
--If the same user is the only one that wants memory, the state must first go to the Idle
state.This is to prevent timing issues in regrard to reasserting the Request signals. This
may not be needed after testing with hardware
 next_state <= Idle;
 end if;
 end if; .

 when M =>

 if Mem_Done = '0' then
 RD <= M_RD;
 WR <= M_WR;
 next_state <= M;
 elsif Mem_Done = '1' then
 if P_REQ = '1' then
 next_state <= P;
 elsif X_REQ = '1' then
 next_state <= X;
 else
 next_state <= Idle;
 end if;
 end if;

 when X =>

105

 if Mem_Done = '0' then
 RD <= X_RD;
 WR <= X_WR;
 next_state <= X;
 elsif Mem_Done = '1' then
 if M_REQ = '1' then
 next_state <= M;
 elsif P_REQ = '1' then
 next_state <= P;
 else
 next_state <= Idle;
 end if;
 end if;

 when others =>
 null;

 end case;

end process nxtStProc;

--This process determines the output signals based on the current state and input signals

outConProc:
process(curr_state,next_state,P_RD,P_WR,M_RD,M_WR,X_RD,X_WR,X_Addr_In,

P_Addr_In,M_Data_In,hData_Out,P_Data_In,X_Data_In,M_Addr_In,
Mem_Done)

begin

 case curr_state is

 when Idle =>
 --In Idle, all the memory done signals are set to '0' to prevent misreading of
invalid memory signals
 X_Mem_Done <= '0';
 P_Mem_Done <= '0';
 M_Mem_Done <= '0';
 --hAddr <= ADDR_Z; --Connect Address bus to high Z

 when P =>
 hAddr <= P_Addr_In; --Connect P lines to Input/Output Lines
 P_Data_Out <= hData_Out;
 hData_In <= P_Data_In;
 P_Mem_Done <= Mem_Done;

106

 when X =>
 hAddr <= X_Addr_In; --Connect X lines to Input/Output Lines
 X_Data_Out <= hData_Out;
 hData_In <= X_Data_In;
 X_Mem_Done <= Mem_Done;

 when M =>
 hAddr <= M_Addr_In; --Connect M lines to Input/Output Lines
 M_Data_Out <= hData_Out;
 hData_In <= M_Data_In;
 M_Mem_Done <= Mem_Done;

 when others =>
 hAddr <= ADDR_Z; --Connect Address bus to high Z

end case;

end process ;

--Process to go from state to state (syncronize outputs)

state_to_state: process (CLK,RST)

--Procedes to next state when Memory Operation is done
begin
 if (RST = '1') then
 curr_state <= Idle;
 elsif (CLK'EVENT and CLK='1') then --and Mem_Done = '1') then
 curr_state <= next_state;
 end if;

end process;

end behavioral;

107

===
 Address Selector <Add_Select.vhd>
===

Project: AYK-14 VHSIC Processor Module Hardware Emulator
Component: Address Selector for MBUS
Description: Address multiplexor that provides the Desire signals to
 the MBUS ARbitrator for requests for memory from the
 Processor that are out of range of the On Board Memory.
 It defaults values to High Z when the data requested is
 available on board.

Author: LT Bryan Fetter, USN
Advisor: Dr. Russ Duren
Co-advisor: Dr. Hersch Loomis
Location: Naval Postgraduate School

Created: 25 October 2002
Modified: 7 November 2002
Simulated:
Target: XCV1000E FG1156
Software: Foundation 4.2i
Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

package Add_Select is

component Add_Select
 port (
 --Processor Side
 Add_In_Proc: in unsigned (22 downto 0);
 Data_WR_Proc: in unsigned (31 downto 0);
 Data_RD_Proc: out unsigned (31 downto 0);

108

 RD_Req_in_Proc: in STD_LOGIC;
 WR_Req_in_Proc: in STD_LOGIC;
 Mem_req_Done_Proc: out STD_LOGIC;
 --Mem_Writedoub_request: in STD_LOGIC;
 --IR_Bus: in unsigned (31 downto 0);
 --Protect: in unsigned (2 downto 0);

 --MBUS Side
 Data_RD_MBUS: in unsigned (31 downto 0);
 Data_WR_MBUS: out unsigned (31 downto 0);
 Add_out_MBUS: out unsigned (22 downto 0);
 RD_Req_out_MBUS: out STD_LOGIC;
 WR_Req_out_MBUS: out STD_LOGIC;
 Proc_Desire_L_MBUS: out STD_LOGIC;
 Mem_req_Done_MBUS: in STD_LOGIC;

 --OBM Side
 Add_In_OBM: out unsigned (22 downto 0);
 Data_RD_OBM: in unsigned (31 downto 0);
 Data_WR_OBM: out unsigned (31 downto 0);
 RD_Req_OBM: out STD_LOGIC;
 WR_Req_OBM: out STD_LOGIC;
 Mem_req_Done_OBM: in STD_LOGIC
 --Mem_Writedoub_request_OBM: out STD_LOGIC;
 --IR_Bus_OBM: out unsigned (31 downto 0);
 --Protect_OBM: out unsigned (2 downto 0);
);
end component;

end package Add_Select;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity Add_Select is
 port (
 --Processor Side
 Add_In_Proc: in unsigned (22 downto 0);
 Data_WR_Proc: in unsigned (31 downto 0);
 Data_RD_Proc: out unsigned (31 downto 0);
 RD_Req_in_Proc: in STD_LOGIC;
 WR_Req_in_Proc: in STD_LOGIC;
 Mem_req_Done_Proc: out STD_LOGIC;
 --Mem_Writedoub_request: in STD_LOGIC;

109

 --IR_Bus: in unsigned (31 downto 0);
 --Protect: in unsigned (2 downto 0);

 --MBUS Side
 Data_RD_MBUS: in unsigned (31 downto 0);
 Data_WR_MBUS: out unsigned (31 downto 0);
 Add_out_MBUS: out unsigned (22 downto 0);
 RD_Req_out_MBUS: out STD_LOGIC;
 WR_Req_out_MBUS: out STD_LOGIC;
 Proc_Desire_L_MBUS: out STD_LOGIC;
 Mem_req_Done_MBUS: in STD_LOGIC;

 --OBM Side
 Add_In_OBM: out unsigned (22 downto 0);
 Data_RD_OBM: in unsigned (31 downto 0);
 Data_WR_OBM: out unsigned (31 downto 0);
 RD_Req_OBM: out STD_LOGIC;
 WR_Req_OBM: out STD_LOGIC;
 Mem_req_Done_OBM: in STD_LOGIC
 --Mem_Writedoub_request_OBM: out STD_LOGIC;
 --IR_Bus_OBM: out unsigned (31 downto 0);
);
end Add_Select;

architecture Add_Select_arch of Add_Select is

constant Mem_Blk_1_L : natural := 1048576 ;
--Lower bound of VPM Master OBM (100000H)
constant Mem_Blk_1_H : natural := 2097151 ;
--Upper bound of VPM Master OBM (1FFFFFH)
constant Mem_Blk_2_L : natural := 2097152 ;
--Lower bound of VPM Slave1 OBM (200000H)
constant Mem_Blk_2_H : natural := 3145727 ;
--Upper bound of VPM Slave1 OBM (2FFFFFH)

signal Address : unsigned (22 downto 0);
--signal Data_RD : unsigned (31 downto 0);
signal Data_RD_M : unsigned (31 downto 0);
signal Data_RD_O : unsigned (31 downto 0);
signal Data_WR: unsigned (31 downto 0);
signal RD_Req : std_logic;
signal WR_Req : std_logic;
signal Mem_req_Done : std_logic;

begin

110

Address <= Add_In_Proc;
--Data_RD_Proc <= Data_RD;
Data_RD_M <= Data_RD_MBUS;
Data_RD_O <= Data_RD_OBM;
Data_WR <= Data_WR_Proc;
RD_Req <= RD_Req_In_Proc;
WR_Req <= WR_Req_In_Proc;
Mem_req_Done_Proc <= Mem_req_Done;

process
(Address,Data_WR,RD_Req,WR_Req,Data_RD_MBUS,Mem_req_Done_MBUS,
 Data_RD_OBM,Mem_req_Done_OBM,Data_RD_M,Data_RD_O)

 begin
 --If address is in OBM range, conect signals to OBM
 --and put MBUS signals to High Z
 if (Address >= to_unsigned(Mem_Blk_1_L,23)
 and Address <= to_unsigned(Mem_Blk_1_H,23)) then
 --Connect Signal to OBM
 Add_In_OBM <= Address;
 Data_WR_OBM <= Data_WR;
 Data_RD_Proc <= Data_RD_O;
 RD_Req_OBM <= RD_Req;
 WR_Req_OBM <= WR_Req;
 Mem_req_Done <= Mem_req_Done_OBM;
 --High Z signals to MBUS
 Add_out_MBUS <= (others => 'Z');
 Data_WR_MBUS <= (others => 'Z');
 RD_Req_out_MBUS <= '0';
 WR_Req_out_MBUS <= '0';
 Proc_Desire_L_MBUS <= '1';

 --If address is out of OBM range, connect signals to MBUS
 --and put OBM signals High Z
 elsif (Address < to_unsigned(Mem_Blk_1_L,23)
 or (Address >= to_unsigned(Mem_Blk_2_L,23)
 and Address <= to_unsigned(Mem_Blk_2_H,23))) then
 --Connect signals to MBUS
 Add_out_MBUS <= Address;
 Data_WR_MBUS <= Data_WR;
 Data_RD_Proc <= Data_RD_M;
 RD_Req_out_MBUS <= RD_Req;
 WR_Req_out_MBUS <= WR_Req;
 Mem_req_Done <= Mem_req_Done_MBUS;

111

 Proc_Desire_L_MBUS <= (RD_Req NOR WR_Req);
 --High Z signals to OBM
 Add_In_OBM <= (others => 'Z');
 Data_WR_OBM <= (others => 'Z');
 RD_Req_OBM <= '0';
 WR_Req_OBM <= '0';

 else
 Data_RD_Proc <= (others => 'Z');
 Add_out_MBUS <= (others => 'Z');
 Data_WR_MBUS <= (others => 'Z');
 RD_Req_out_MBUS <= '0';
 WR_Req_out_MBUS <= '0';
 Proc_Desire_L_MBUS <= '1';
 Add_In_OBM <= (others => 'Z');
 Data_WR_OBM <= (others => 'Z');
 RD_Req_OBM <= '0';
 WR_Req_OBM <= '0';
 Mem_req_Done <= '0';

 end if;
end process;

end Add_Select_arch;

112

===
 Event Bus Controller (State-Machine) <evt_fsm.vhdl>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: Event Bus Interface Controller
 Description: State Machine that provides the interrogation of all polled Events

via the EBUS using control signals on the EMON Bus. Provides
capability to lock-out Class III interrupts via monitoring of SR1-
Bit3.Contains Timing loop that provides 9 clock cycles for each
state. This can be changed by calculating number of clock-cycles
required to permit a cycle time of 444 nsec.

 Author: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 25 October 2002
 Modified: 28 October 2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Foundation 4.2i
 Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use WORK.common.all;

entity EVT_FSM is
 port (
 EBUS: in STD_LOGIC_VECTOR (0 to 7); -- Event Bus Input
 CLK: in STD_LOGIC; -- Clock
 RST: in STD_LOGIC; -- Reset

113

 SR1_BIT: in STD_LOGIC; -- Status Register 1 Bit 3
 EMON: out STD_LOGIC_VECTOR (0 to 7); -- Event Monitor Bus
 E_VCTR: out STD_LOGIC_VECTOR (0 to 8) -- Event Vector (modified)
);
end EVT_FSM;

architecture EVT_FSM_arch of EVT_FSM is

type evt_FSM_type is (Idle,Cls_Req, Grp_Req, Disc_Req);

constant Clock_Freq: natural := 40_000_000; --INPUT CLOCK FREQ in Hz
--***CHANGE THIS BASED ON OPERATING FREQ***
constant Design_Freq: natural := 40_000_000; --Design Freq in Hz
constant Max_Cycles: natural := 9 * (Clock_Freq / Design_Freq);

signal curr_State, next_State: evt_FSM_type;

signal clk_count: unsigned(log2(Max_Cycles)-1 downto 0);
-- Used to count clock cycles
signal termCtrl: std_logic;
-- Used in counting process
signal Pri_Cls, Pri_Disc, Pri_Grp: std_logic_vector (2 downto 0);
--Used to generate Event Vector

begin
 -- Process to generate Next State

 nxt_St_Proc: process (curr_State, EBUS, SR1_BIT,clk_count)

 begin

 case curr_State is
 when Idle =>
 if (EBUS = "00000000") then --No Events Active
 next_State <= Idle;
 else
 next_State <= Cls_Req;
 end if;
 when Cls_Req =>
 if (EBUS = "00000000") then --No Events Active
 next_State <= Idle;
 --Non I/O Class 0
 elsif ((std_match(EBUS,"1-------"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then

114

 next_State <= Disc_Req;
 --I/O Class 1
 elsif ((std_match(EBUS,"01------"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Grp_Req;
 --I/O Class 2
 elsif ((std_match(EBUS,"001-----"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Grp_Req;
 --Non I/O Class 3
 elsif ((std_match(EBUS,"0001----"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Disc_Req;
 --I/O Class 4
 elsif ((std_match(EBUS,"00001---"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Grp_Req;
 --Non I/O Class 5
 elsif ((std_match(EBUS,"000001--"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Disc_Req;
 --Non I/O Class 6
 elsif ((std_match(EBUS,"0000001-"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Disc_Req;
 --I/O Class 7
 elsif ((std_match(EBUS,"00000001"))
 and clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)
 and (SR1_BIT = '1')) then
 next_State <= Grp_Req;
 else
 next_State <= Cls_Req;
 end if;

 when Grp_Req =>
 -- Wait in this state for Max clocks
 if (clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Disc_Req;
 else
 next_State <= Grp_Req;
 end if;

 when Disc_Req =>
 -- Wait in this state for Max clocks
 if (clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 next_State <= Cls_req;

115

 else
 next_State <= Disc_Req;
 end if;

 when others =>
 null;

 end case;

 end process nxt_St_Proc;

 --Current State Process - Clock triggered to make current state = next state

 curStProc: process (CLK, RST)
 begin
 if (RST = '1') then
 curr_State <= Idle;
 elsif (CLK'event and CLK = '1') then
 curr_State <= next_State;
 end if;
 end process curStProc;

 -- Clock Counter - Provides 9 clock-cycles for each State when an event is active

 clock_counter: process (CLK, RST)
 begin
 case curr_State is
 when Idle =>
 clk_count <= TO_UNSIGNED(0,clk_count'length);
 termCtrl <= '1';
 when others =>

 if (CLK'event and CLK = '1') then

 if (termCtrl = '1') then
 clk_count <= TO_UNSIGNED(0,clk_count'length);
 else
 clk_count <= clk_count + 1;
 end if;

 if (clk_count = TO_UNSIGNED(Max_Cycles-1,clk_count'length)) then
 termCtrl <= '1';
 else
 termCtrl <= '0';
 end if;

116

 end if;
 end case;
 end process clock_counter;

 --Output Conditioning Logic

 outConProc: process (curr_State, EBUS, Pri_Cls, Pri_Grp, Pri_Disc, SR1_BIT)
 begin
 case curr_State is
 when Idle =>
 EMON <= "01000000";
 --if (EBUS = "00000000") then
 -- Pri_Cls <= "000";
 -- Pri_Grp <= "000";
 -- Pri_Disc <= "000";
 --end if;

 when Cls_Req =>
 if (std_match(EBUS,"1-------")) then --Non I/O Class 0
 Pri_Cls <= "000";
 Pri_Grp <= "000";
 elsif (std_match(EBUS,"01------")) then --I/O Class 1
 Pri_Cls <= "001";
 elsif (std_match(EBUS,"001-----")) then --I/O Class 2
 Pri_Cls <= "010";
 elsif (std_match(EBUS,"0001----")) then --Non I/O Class 3
 Pri_Cls <= "011";
 Pri_Grp <= "000";
 elsif (std_match(EBUS,"00001---")) then --I/O Class 4
 Pri_Cls <= "100";
 elsif (std_match(EBUS,"000001--")) then --Non I/O Class 5
 Pri_Cls <= "101";
 Pri_Grp <= "000";
 elsif (std_match(EBUS,"0000001-")) then --Non I/O Class 6
 Pri_Cls <= "110";
 Pri_Grp <= "000";
 elsif ((std_match(EBUS,"00000001"))
 and (SR1_BIT = '1')) then --I/O Class 7
 Pri_Cls <= "111";
 else
 Pri_Cls <= "000";
 end if;
 EMON <= "01000000";
 when Grp_Req =>
 if (std_match(EBUS,"1-------")) then --Group 0/1

117

 Pri_Grp <= "000";
 elsif (std_match(EBUS,"01------")) then --Group 2/3
 Pri_Grp <= "001";
 elsif (std_match(EBUS,"001-----")) then --Group 4/5
 Pri_Grp <= "010";
 elsif (std_match(EBUS,"0001----")) then --Group 6/7
 Pri_Grp <= "011";
 elsif (std_match(EBUS,"00001---")) then --Group 8/9
 Pri_Grp <= "100";
 elsif (std_match(EBUS,"000001--")) then --Group A/B
 Pri_Grp <= "101";
 elsif (std_match(EBUS,"0000001-")) then --Group C/D
 Pri_Grp <= "110";
 elsif (std_match(EBUS,"00000001")) then --Group E/F
 Pri_Grp <= "111";
 else
 Pri_Grp <= "000";
 end if;
 EMON <= "10" & Pri_Cls & "000";
 when Disc_Req =>
 if (std_match(EBUS,"1-------")) then --Discrete 1 or Even 1
 Pri_Disc <= "000";
 elsif (std_match(EBUS,"01------")) then --Discrete 2 or Even 2
 Pri_Disc <= "001";
 elsif (std_match(EBUS,"001-----")) then --Discrete 3 or Even 3
 Pri_Disc <= "010";
 elsif (std_match(EBUS,"0001----")) then --Discrete 4 or Even 4
 Pri_Disc <= "011";
 elsif (std_match(EBUS,"00001---")) then --Discrete 5 or Odd 1
 Pri_Disc <= "100";
 elsif (std_match(EBUS,"000001--")) then --Discrete 6 or Odd 2
 Pri_Disc <= "101";
 elsif (std_match(EBUS,"0000001-")) then --Discrete 7 or Odd 3
 Pri_Disc <= "110";
 elsif (std_match(EBUS,"00000001")) then --Discrete 8 or Odd 4
 Pri_Disc <= "111";
 else
 Pri_Disc <= "000";
 end if;
 EMON <= "11" & Pri_Cls & Pri_Grp;
 when others =>
 null;

 end case;

 end process outConProc;

118

 E_VCTR <= Pri_Cls & Pri_Grp & Pri_Disc;

end EVT_FSM_arch;

119

===
-- SDRAM Controller <sdramcnt.vhdl>
===

-- Project: AYK-14 VHSIC Processor Module Hardware Emulator
-- Component: SDRAM Controller
-- Description: State Machine that acts as the interface to the SDRAM and

provides all neccesary control and upkeep functions required for
SDRAM usage.

-- Author: D. Van Den Bout
-- Modified for use in
-- this thesis by: LT Bryan Fetter
-- Advisor: Dr. Russ Duren
-- Co-advisor: Dr. Hersch Loomis
-- Location: Naval Postgraduate School

-- Modified: 27 November 2002
-- Simulated: 30 October 20020
-- Target: XCV1000E FG1156
-- Software: Foundation 4.2i
-- Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use unisim.vcomponents.all;
use WORK.common.all;
use WORK.xilinx.all;

package sdram is

component sdramCntl
 generic(

120

 FREQ: natural := 40_000;-- operating frequency in KHz
 DATA_WIDTH: natural := 16;-- host & SDRAM data width
 NROWS: natural := 4096; -- number of rows in SDRAM array
 NCOLS: natural := 512; -- number of columns in SDRAM array
 HADDR_WIDTH: natural := 23;-- host-side address width
 SADDR_WIDTH: natural := 12 -- SDRAM-side address width
);
 port(
 clkin: in std_logic; -- master clock

 -- host side
 bufclk: out std_logic; -- buffered master clock
 clk0: out std_logic; -- host clock sync'ed to master clock
 clk2x: out std_logic; -- double-speed host clock
 lock: out std_logic; -- indicate when clock circuitry is
 -- locked to master clock
 rst: in std_logic; -- reset
 rd: in std_logic; -- read data
 wr: in std_logic; -- write data
 done: out std_logic; -- read/write op done
 hAddr: in unsigned(HADDR_WIDTH-1 downto 0);

-- address from host
 hDIn: in unsigned(DATA_WIDTH-1 downto 0);

-- data from host
 hDOut: out unsigned(DATA_WIDTH-1 downto 0);

-- data to host
 sdramCntl_state: out std_logic_vector(3 downto 0);
 -- SDRAM side
 sclkfb: in std_logic; -- clock from SDRAM after PCB delays
 sclk: out std_logic; -- SDRAM clock sync'ed to master clock
 sclk_tst: out std_logic;
 cke: out std_logic;-- clock-enable to SDRAM
 cs_n: out std_logic;-- chip-select to SDRAM
 ras_n: out std_logic; -- command input to SDRAM
 cas_n: out std_logic; -- command input to SDRAM
 we_n: out std_logic;-- command input to SDRAM
 ba: out unsigned(1 downto 0);
 -- SDRAM bank address bits
 sAddr: out unsigned(SADDR_WIDTH-1 downto 0);

-- SDRAM row/column address
 sData: inout unsigned(DATA_WIDTH-1 downto 0);

-- SDRAM in/out databus
 dqmh: out std_logic; -- high databits I/O mask
 dqml: out std_logic -- low databits I/O mask
);
end component;

121

end package sdram;

library IEEE;--,unisim;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use unisim.vcomponents.all;
use WORK.common.all;
use WORK.xilinx.all;

entity sdramCntl is
 generic(
 FREQ: natural := 40_000; -- operating frequency in KHz
 DATA_WIDTH: natural := 16; -- host & SDRAM data width
 NROWS: natural := 4096; -- number of rows in SDRAM array
 NCOLS: natural := 512; -- number of columns in SDRAM
array
 HADDR_WIDTH: natural := 23; -- host-side address width
 SADDR_WIDTH: natural := 12 -- SDRAM-side address width
);
 port(
 clkin: in std_logic; -- master clock

 -- host side
 bufclk: out std_logic; -- buffered master clock
 clk0: out std_logic; -- host clock sync'ed to master clock
 clk2x: out std_logic; -- double-speed host clock
 lock: out std_logic; -- indicate when clock circuitry
 -- is locked to master clock
 rst: in std_logic; -- reset
 rd: in std_logic;-- read data
 wr: in std_logic;-- write data
 done: out std_logic; -- read/write op done
 hAddr: in unsigned(HADDR_WIDTH-1 downto 0);

-- address from host
 hDIn: in unsigned(DATA_WIDTH-1 downto 0);

-- data from host
 hDOut: out unsigned(DATA_WIDTH-1 downto 0);

-- data to host
 sdramCntl_state: out std_logic_vector(3 downto 0);

 -- SDRAM side
 sclkfb: in std_logic; -- clock from SDRAM after PCB delays
 sclk: out std_logic; -- SDRAM clock sync'ed to master clock
 sclk_tst: out std_logic;
 cke: out std_logic;-- clock-enable to SDRAM

122

 cs_n: out std_logic;-- chip-select to SDRAM
 ras_n: out std_logic; -- command input to SDRAM
 cas_n: out std_logic; -- command input to SDRAM
 we_n: out std_logic;-- command input to SDRAM
 ba: out unsigned(1 downto 0);
 -- SDRAM bank address bits
 sAddr: out unsigned(SADDR_WIDTH-1 downto 0);

-- SDRAM row/column address
 sData: inout unsigned(DATA_WIDTH-1 downto 0);

-- SDRAM in/out databus
 dqmh: out std_logic; -- high databits I/O mask
 dqml: out std_logic -- low databits I/O mask
);
end sdramCntl;

architecture arch of sdramCntl is

 -- constants
 constant ColCmdPos: natural := 10;

-- position of command bit in SDRAM column address

 constant Tinit: natural := 100; -- min initialization interval (us)
 constant Tras: natural := 44; -- min interval between active

to precharge commands (ns)
 constant Trc: natural := 66; -- min interval between active

to active commands (ns)
 constant Trcd: natural := 20; -- min interval between active

 and R/W commands (ns)
 constant Tref: natural := 64_000_000;-- maximum refresh interval (ns)
 constant Trfc: natural := 66; -- duration of refresh operation (ns)
 constant Trp: natural := 20;-- min precharge command duration (ns)
 constant Twr: natural := 15;-- write recovery time (ns)
 constant Ccas: natural := 3; -- CAS latency (cycles)
 constant Cmrd: natural := 3; -- mode register setup time (cycles)
 constant RfshCycles: natural := 8; -- number of refresh cycles needed

 to init RAM

 constant ROW_LEN: natural := log2(NROWS);
 -- number of row address bits
 constant COL_LEN: natural := log2(NCOLS);
 -- number of column address bits
 constant NORM: natural := 1_000_000;
 -- normalize ns * KHz
 constant INIT_CYCLES: natural := 1 + ((Tinit * FREQ) / 1000);

123

 -- SDRMA power-on initialization interval
 constant RAS_CYCLES: natural := 1 + ((Tras * FREQ) / NORM);
 -- active-to-precharge interval
 constant RC_CYCLES: natural := 1 + ((Trc * FREQ) / NORM);
 -- active-to-active interval
 constant RCD_CYCLES: natural := 1 + ((Trcd * FREQ) / NORM);
 -- active-to-R/W interval
 constant REF_CYCLES: natural := 1 + (((Tref/NROWS) * FREQ) / NORM);
 -- interval between row refreshes
 constant RFC_CYCLES: natural := 1 + ((Trfc * FREQ) / NORM);
 -- refresh operation interval
 constant RP_CYCLES: natural := 1 + ((Trp * FREQ) / NORM);
 -- precharge operation interval
 constant WR_CYCLES: natural := 1 + ((Twr * FREQ) / NORM);
 -- write recovery time

 -- states of the SDRAM controller state machine
 type cntlState is (
 INITWAIT, -- initialization –

waiting for power-on initialization to complete
 INITPCHG, -- initialization - doing precharge of banks
 INITSETMODE,-- initialization - set SDRAM mode
 INITRFSH, -- initialization - do refreshes
 REFRESH, -- refresh a row of the SDRAM
 RW, -- wait for read/write operations to SDRAM
 RDDONE, -- indicate that the SDRAM read is done
 WRDONE, -- indicate that the SDRAM write is done
 ACTIVATE -- open a row of the SDRAM for reading/writing
);
 signal state_r, state_next: cntlState; -- state register and next state

 constant AUTO_PCHG_ON: std_logic := '1';
 -- set sAddr(10) to this value to auto-precharge the bank
 constant AUTO_PCHG_OFF: std_logic := '0';
 -- set sAddr(10) to this value to disable auto-precharge
 constant ALL_BANKS: std_logic := '1';
 -- set sAddr(10) to this value to select all banks
 constant ACTIVE_BANK: std_logic := '0';
 -- set sAddr(10) to this value to select only the active bank
 signal bank: unsigned(ba'range);
 signal row: unsigned(ROW_LEN - 1 downto 0);
 signal col: unsigned(COL_LEN - 1 downto 0);
 signal col_tmp: unsigned(sAddr'high-1 downto sAddr'low);
 signal changeRow: std_logic;
 signal dirOut: std_logic; -- high when driving data to SDRAM

124

 -- registers
 signal activeBank_r, activeBank_next: unsigned(bank'range);
 -- currently active SDRAM bank
 signal activeRow_r, activeRow_next: unsigned(row'range);
 -- currently active SDRAM row
 signal inactiveFlag_r, inactiveFlag_next: std_logic;
 -- 1 when all SDRAM rows are inactive
 signal doRfshFlag_r, doRfshFlag_next: std_logic;
 -- 1 when a row refresh operation is required
 signal wrFlag_r, wrFlag_next: std_logic;
 -- 1 when writing data to SDRAM
 signal rdFlag_r, rdFlag_next: std_logic;
 -- 1 when reading data from SDRAM
 signal rfshCntr_r, rfshCntr_next: unsigned(log2(RfshCycles+1)-1 downto 0);
 -- counts initialization refreshes

 -- timer registers that count down times for various SDRAM operations
 signal timer_r, timer_next: unsigned(log2(INIT_CYCLES+1)-1 downto 0);
 -- current SDRAM op time
 signal rasTimer_r, rasTimer_next: unsigned(log2(RAS_CYCLES+1)-1

 downto 0);
 -- active-to-precharge time
 signal wrTimer_r, wrTimer_next: unsigned(log2(WR_CYCLES+1)-1 downto 0);
 -- write-to-precharge time
 signal refTimer_r, refTimer_next: unsigned(log2(REF_CYCLES+1)-1 downto 0);
 -- time between row refreshes

 -- SDRAM commands
 subtype sdramCmd is unsigned(5 downto 0);
 -- cmd = (cs_n,ras_n,cas_n,we_n,dqmh,dqml)
 constant NOP_CMD: sdramCmd := "011100";
 constant ACTIVE_CMD: sdramCmd := "001100";
 constant READ_CMD: sdramCmd := "010100";
 constant WRITE_CMD: sdramCmd := "010000";
 constant PCHG_CMD: sdramCmd := "001011";
 constant MODE_CMD: sdramCmd := "000011";
 constant RFSH_CMD: sdramCmd := "000111";
 signal cmd: sdramCmd;

 -- SDRAM mode register
 subtype sdramMode is unsigned(11 downto 0);
 constant MODE: sdramMode := "00" & "0" & "00" & "011" & "0" & "000";

 -- clock DLL signals
 signal logic0: std_logic;
 -- signals for internal logic clock DLL

125

 signal bufclkin, dllint_clk0, dllint_clk2x, bufdllint_clk0,
 bufdllint_clk2x, lockint: std_logic;
 -- signals for external logic clock DLL
 signal bufdllext_clk0, dllext_clk0, lockext: std_logic;
 signal clk: std_logic; -- clock for SDRAM controller logic

begin

 logic0 <= '0';

 -- master clock must come from a dedicated clock pin
 clkpad: IBUFG port map (I=>clkin, O=>bufclkin);
 bufclk <= bufclkin;

 -- generate an internal clock sync'ed to the master clock
 dllint: CLKDLL port map(
 CLKIN=>bufclkin, CLKFB=>bufdllint_clk0, CLK0=>dllint_clk0,
 RST=>logic0, CLK90=>open, CLK180=>open, CLK270=>open,
 CLK2X=>dllint_clk2x, CLKDV=>open, LOCKED=>lockint
);
 -- sync'ed single and double-speed clocks for use by internal logic
 clkg: BUFG port map (I=>dllint_clk0, O=>bufdllint_clk0);
 clkg2x: BUFG port map(I=>dllint_clk2x, O=>bufdllint_clk2x);
 clk <= bufdllint_clk0; -- SDRAM controller logic clock
 clk0 <= bufdllint_clk0; -- clock to other FPGA logic
 clk2x <= bufdllint_clk2x; -- doubled clock to other FPGA logic;
 lock <= lockint and lockext; -- indicate lock status of the DLLs

 -- generate an external SDRAM clock sync'ed to the master clock
-- clkfbpad : IBUFG port map (I=>sclkfb, O=>bufsclkfb); -- SDRAM clock with
PCB delays
-- dllext: CLKDLL port map(
-- CLKIN=>bufclkin, CLKFB=>bufsclkfb, CLK0=>dllext_clk0,
 clkfbpad : BUFG port map (I=>dllext_clk0, O=>bufdllext_clk0);
 -- SDRAM clock with PCB delays
 dllext: CLKDLL port map(
 CLKIN=>bufclkin, CLKFB=>bufdllext_clk0, CLK0=>dllext_clk0,
 RST=>logic0, CLK90=>open, CLK180=>open, CLK270=>open,
 CLK2X=>open, CLKDV=>open, LOCKED=>lockext
);

 -- output the sync'ed SDRAM clock to the SDRAM
 clkextpad: OBUF port map (I=>dllext_clk0, O=>sclk);
 clkextpad_2: OBUF port map (I=>bufdllext_clk0, O=>sclk_tst);

126

 hDOut <= sData(hDOut'range); -- connect SDRAM data bus to host data bus
 sData <= hDIn(sData'range) when dirOut='1' else (others=>'Z'); \
 -- connect host data bus to SDRAM data bus

 combinatorial: process(rd,wr,hAddr,hDIn,state_r,bank,row,col,changeRow,
 activeBank_r,activeRow_r,doRfshFlag_r,rdFlag_r,wrFlag_r,

 rfshCntr_r,timer_r,rasTimer_r,wrTimer_r,refTimer_r,cmd,col_tmp,inactiveFlag_r
)
 begin
 -- attach bits in command to SDRAM control signals
 (cs_n,ras_n,cas_n,we_n,dqmh,dqml) <= cmd;

 -- get bank, row, column from host address
 bank <= hAddr(bank'length + ROW_LEN + COL_LEN - 1

downto ROW_LEN + COL_LEN);
 row <= hAddr(ROW_LEN + COL_LEN - 1 downto COL_LEN);
 col <= hAddr(COL_LEN - 1 downto 0);
 -- extend column (if needed) until it is as large

 as the (SDRAM address bus - 1)
 col_tmp <= (others=>'0'); -- set it to all zeroes
 col_tmp(col'range) <= col; -- write column into the lower bits

 -- default operations
 cke <= YES; -- enable SDRAM clock input
 cmd <= NOP_CMD; -- set SDRAM command to no-operation
 done <= NO; -- pending SDRAM operation is not done
 ba <= bank; -- set SDRAM bank address bits
 -- set SDRAM address to column with interspersed command bit
 sAddr(ColCmdPos-1 downto 0) <= col_tmp(ColCmdPos-1 downto 0);
 sAddr(sAddr'high downto ColCmdPos+1) <=

col_tmp(col_tmp'high downto ColCmdPos);
 sAddr(ColCmdPos) <= AUTO_PCHG_OFF;

-- set command bit to disable auto-precharge
 dirOut <= NO;

 -- default register updates
 state_next <= state_r;
 inactiveFlag_next <= inactiveFlag_r;
 activeBank_next <= activeBank_r;
 activeRow_next <= activeRow_r;
 doRfshFlag_next <= doRfshFlag_r;
 rdFlag_next <= rdFlag_r;
 wrFlag_next <= wrFlag_r;
 rfshCntr_next <= rfshCntr_r;

127

 -- update timers
 if timer_r /= TO_UNSIGNED(0,timer_r'length) then
 timer_next <= timer_r - 1;
 else
 timer_next <= timer_r;
 end if;

 if rasTimer_r /= TO_UNSIGNED(0,rasTimer_r'length) then
 rasTimer_next <= rasTimer_r - 1;
 else
 rasTimer_next <= rasTimer_r;
 end if;

 if wrTimer_r /= TO_UNSIGNED(0,wrTimer_r'length) then
 wrTimer_next <= wrTimer_r - 1;
 else
 wrTimer_next <= wrTimer_r;
 end if;

 if refTimer_r /= TO_UNSIGNED(0,refTimer_r'length) then
 refTimer_next <= refTimer_r - 1;
 else
 -- on timeout, reload the timer with the interval between row refreshes
 -- and set the flag that indicates a refresh operation is needed.
 refTimer_next<=

TO_UNSIGNED(REF_CYCLES,refTimer_next'length);
 doRfshFlag_next <= YES;
 end if;

 -- determine if another row or bank in the SDRAM is being addressed
 if row /= activeRow_r or bank /= activeBank_r

 or inactiveFlag_r = YES then
 changeRow <= YES;
 else
 changeRow <= NO;
 end if;

 -- ***** compute next state and outputs *****

 -- SDRAM initialization

 -- don't do anything if the previous operation has not completed yet.
 -- Place this before anything else so operations in the previous state
 -- complete before any operations in the new state are executed.
 if timer_r /= TO_UNSIGNED(0,timer_r'length) then
 sdramCntl_state <= "0000";

128

 elsif state_r = INITWAIT then
 -- initiate wait for SDRAM power-on initialization
 timer_next

 <= TO_UNSIGNED(INIT_CYCLES,timer_next'length);
 -- set timer for init interval
 state_next <= INITPCHG;

-- precharge SDRAM after power-on initialization
 sdramCntl_state <= "0001";
 elsif state_r = INITPCHG then
 cmd <= PCHG_CMD; -- initiate precharge of the SDRAM
 sAddr(ColCmdPos) <= ALL_BANKS; -- precharge all banks
 timer_next <= TO_UNSIGNED(RP_CYCLES,timer_next'length);
 -- set timer for this operation
 -- now setup the counter for the number of refresh ops
 -- needed during initialization
 rfshCntr_next <=

TO_UNSIGNED(RfshCycles,rfshCntr_next'length);
 state_next <= INITRFSH;

-- perform refresh ops after setting the mode
 sdramCntl_state <= "0010";
 elsif state_r = INITRFSH then
 -- refresh the SDRAM a number of times during initialization
 if rfshCntr_r /= TO_UNSIGNED(0,rfshCntr_r'length) then
 -- do a refresh operation if the counter is not zero yet
 cmd <= RFSH_CMD; -- refresh command goes to SDRAM
 timer_next <=

 TO_UNSIGNED(RFC_CYCLES,timer_next'length);
 -- refresh operation interval
 rfshCntr_next <= rfshCntr_r - 1;

-- decrement refresh operation counter
 state_next <= INITRFSH;
 -- return to this state while counter is non-zero
 else
 -- refresh op counter reaches zero,
 -- so set the operating mode of the SDRAM
 state_next <= INITSETMODE;
 end if;
 sdramCntl_state <= "0100";
 elsif state_r = INITSETMODE then
 -- set the mode register in the SDRAM
 cmd <= MODE_CMD;

-- initiate loading of mode register in the SDRAM
 sAddr <= MODE;

-- output mode register bits onto the SDRAM address bits
 timer_next <= TO_UNSIGNED(Cmrd,timer_next'length);

129

 -- set timer for this operation
 state_next <= RW;
 -- process read/write operations after initialization is done
 sdramCntl_state <= "0011";

 -- refresh a row of the SDRAM when the refresh timer hits zero and

 sets the flag
 -- and the SDRAM is no longer being read/written.
 -- Place this before the RW state so the host can't block refreshes by doing
 -- continuous read/write operations.
 elsif doRfshFlag_r = YES and wrFlag_r = NO and rdFlag_r = NO then
 if rasTimer_r = TO_UNSIGNED(0,rasTimer_r'length)
 and wrTimer_r = TO_UNSIGNED(0,wrTimer_r'length) then
 doRfshFlag_next <= NO;

-- reset the flag that initiates a refresh operation
 cmd <= PCHG_CMD;

-- initiate precharge of the SDRAM
 sAddr(ColCmdPos) <= ALL_BANKS;

-- precharge all banks
 timer_next <=

 TO_UNSIGNED(RP_CYCLES,timer_next'length);
 -- set timer for this operation
 inactiveFlag_next <= YES;
 -- all rows are inactive after a precharge operation
 state_next <= REFRESH;
 -- refresh the SDRAM after the precharge
 end if;
 sdramCntl_state <= "0101";
 elsif state_r = REFRESH then
 cmd <= RFSH_CMD;-- refresh command goes to SDRAM
 timer_next <=

 TO_UNSIGNED(RFC_CYCLES,timer_next'length);
 -- refresh operation interval
 -- after refresh is done, resume writing or reading the SDRAM

 if in progress
 state_next <= RW;
 sdramCntl_state <= "0110";

 -- do nothing but wait for read or write operations
 elsif state_r = RW then
 if rd = YES then
 -- the host has initiated a read operation
 rdFlag_next <= YES;
 -- set flag to indicate a read operation is in progress
 -- if a different row or bank is being read,
 -- then precharge the SDRAM and activate the new row

130

 if changeRow = YES then
 -- wait for any row activations or writes to
 -- finish before doing a precharge
 if rasTimer_r

 = TO_UNSIGNED(0,rasTimer_r'length)
 and wrTimer_r

= TO_UNSIGNED(0,wrTimer_r'length) then
 cmd <= PCHG_CMD;

-- initiate precharge of the SDRAM
 sAddr(ColCmdPos) <= ALL_BANKS;
 -- precharge all banks
 timer_next <=

TO_UNSIGNED(RP_CYCLES,
timer_next'length);

 -- set timer for this operation
 inactiveFlag_next <= YES;
 -- all rows are inactive after a

 precharge operation
 state_next <= ACTIVATE;
 -- activate the new row after the

 precharge is done
 end if;
 -- read from the currently active row
 else
 cmd <= READ_CMD;

-- initiate a read of the SDRAM
 timer_next <=

 TO_UNSIGNED(Ccas,timer_next'length);
 -- setup timer for read access
 state_next <= RDDONE;
 -- read the data from SDRAM after the access time
 end if;
 sdramCntl_state <= "0111";
 elsif wr = YES then
 -- the host has initiated a write operation
 -- if a different row or bank is being written,
 -- then precharge the SDRAM and activate the new row
 if changeRow = YES then
 wrFlag_next <= YES;
 -- set flag to indicate a write operation is in progress
 -- wait for any row activations or writes to finish
 -- before doing a precharge
 if rasTimer_r =

 TO_UNSIGNED(0,rasTimer_r'length)
 and wrTimer_r =

 TO_UNSIGNED(0,wrTimer_r'length) then

131

 cmd <= PCHG_CMD;
-- initiate precharge of the SDRAM

 sAddr(ColCmdPos) <= ALL_BANKS;
 -- precharge all banks
 timer_next <=

TO_UNSIGNED(RP_CYCLES,
 timer_next'length);

 -- set timer for this operation
 inactiveFlag_next <= YES;
 -- all rows are inactive after a

 precharge operation
 state_next <= ACTIVATE;
 -- activate the new row after

 the precharge is done
 end if;
 -- write to the currently active row
 else
 cmd <= WRITE_CMD;

-- initiate the write operation
 dirOut <= YES;
 -- set timer so precharge doesn't occur
 -- too soon after write operation
 wrTimer_next <=

TO_UNSIGNED(WR_CYCLES,
 wrTimer_next'length);

 state_next <= WRDONE;
 -- go back and wait for another read/write operation
 end if;
 sdramCntl_state <= "1000";
 else
 null; -- no read or write operation, so do nothing
 sdramCntl_state <= "1001";
 end if;

 -- enter this state when the data read from the SDRAM is available
 elsif state_r = RDDONE then
 rdFlag_next <= NO;-- set flag to indicate the read operation is over
 done <= YES; -- tell the host that the data is ready
 state_next <= RW; -- go back and do another read/write operation
 sdramCntl_state <= "1010";

 -- enter this state when the data is written to the SDRAM
 elsif state_r = WRDONE then
 dirOut <= YES;
 wrFlag_next <= NO;

-- set flag to indicate the write operation is over

132

 done <= YES; -- tell the host that the data is ready
 state_next <= RW; -- go back and do another read/write operation
 sdramCntl_state <= "1011";

 -- activate a row of the SDRAM
 elsif state_r = ACTIVATE then
 cmd <= ACTIVE_CMD;

-- initiate the SDRAM activation operation
 sAddr <= (others=>'0');

-- output the address for the row that will be activated
 sAddr(row'range) <= row;
 activeBank_next <= bank;-- remember the active SDRAM row
 activeRow_next <= row;

-- remember the active SDRAM bank
 inactiveFlag_next <= NO;-- the SDRAM is no longer inactive
 rasTimer_next <=

TO_UNSIGNED(RCD_CYCLES,rasTimer_next'length);
 timer_next <=

 TO_UNSIGNED(RCD_CYCLES,timer_next'length);
 state_next <= RW;
 -- go back and do the read/write operation that

 caused this activation
 sdramCntl_state <= "1100";

 -- no operation
 else
 null;
 sdramCntl_state <= "1101";

 end if;

 end process combinatorial;

 -- update registers on the rising clock edge
 update: process(clk)
 begin
 if clk'event and clk='1' then
 if rst = YES then
 state_r <= INITWAIT;
 activeBank_r <= (others=>'0');
 activeRow_r <= (others=>'0');
 inactiveFlag_r <= YES;
 doRfshFlag_r <= NO;
 rdFlag_r <= NO;
 wrFlag_r <= NO;

133

 rfshCntr_r <= TO_UNSIGNED(0,rfshCntr_r'length);
 timer_r <= TO_UNSIGNED(0,timer_r'length);
 refTimer_r <=

TO_UNSIGNED(REF_CYCLES,refTimer_r'length);
 rasTimer_r <= TO_UNSIGNED(0,rasTimer_r'length);
 wrTimer_r <= TO_UNSIGNED(0,wrTimer_r'length);
 else
 state_r <= state_next;
 activeBank_r <= activeBank_next;
 activeRow_r <= activeRow_next;
 inactiveFlag_r <= inactiveFlag_next;
 doRfshFlag_r <= doRfshFlag_next;
 rdFlag_r <= rdFlag_next;
 wrFlag_r <= wrFlag_next;
 rfshCntr_r <= rfshCntr_next;
 timer_r <= timer_next;
 refTimer_r <= refTimer_next;
 rasTimer_r <= rasTimer_next;
 wrTimer_r <= wrTimer_next;
 end if;
 end if;
 end process update;

end arch;

134

===
 xs_package <xs_pckg.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: Commom Component Declaration
 Description: Declaration of simple components needed in other
 components.

 Author: D. Van den Bout
 Adapted by: LT Bryan Fetter
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 1 September 2002
 Modified: 7 November 2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Foundation 4.2i
 Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

package common is

 constant YES: std_logic := '1';
 constant NO: std_logic := '0';
 constant HI: std_logic := '1';
 constant LO: std_logic := '0';
 function log2(v: in natural) return natural;

end package common;

135

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

package body common is

function log2(v: in natural) return natural is
 variable n: natural;
 variable logn: natural;
begin
 n := 1;
 for i in 0 to 128 loop
 logn := i;
 exit when (n>=v);
 n := n * 2;
 end loop;
 return logn;
end function log2;

end package body common;

library IEEE;--,VIRTEX;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use VIRTEX.components.all;

package xilinx is

component IBUFG
 port(
 O: out std_ulogic;
 I: in std_ulogic
);
end component;

component CLKDLL
 port(
 CLKIN: in std_ulogic := '0';
 CLKFB: in std_ulogic := '0';
 RST: in std_ulogic := '0';
 CLK0: out std_ulogic := '0';
 CLK90: out std_ulogic := '0';
 CLK180: out std_ulogic := '0';

136

 CLK270: out std_ulogic := '0';
 CLK2X: out std_ulogic := '0';
 CLKDV: out std_ulogic := '0';
 LOCKED: out std_ulogic := '0'
);
end component;

component BUFG
 port(
 O: out std_ulogic;
 I: in std_ulogic
);
end component;

component OBUF
 port(
 O: out std_ulogic;
 I: in std_ulogic
);
end component;

end package xilinx;

137

===
 Odd Parity Generator <oddparity.vhd.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: Odd Parity Generator
 Description: Odd parity generator adapted from a design in "Essential VHDL"

by Sundar Rajan. Generates sets of XORs and connects them to the
bits of the incoming Byte to generate odd parity

 Author: Sundar Rajan
 Adapted by: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 25 October 2002
 Modified: 24 November 2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Foundation 4.2i
 Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

package oddParity is

component oddParityGen
 generic(width : integer := 8);
 port (
 data: in UNSIGNED (width - 1 downto 0);
 parity: out STD_LOGIC
);
end component;

end package oddParity;

138

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity oddParityGen is
 generic(width : integer := 8);
 port (
 data: in UNSIGNED (width - 1 downto 0);
 parity: out STD_LOGIC
);
end oddParityGen;

architecture oddParityGen_arch of oddParityGen is
begin

 process (data)
 variable loopXor: std_logic;
 begin
 loopXor := '0';

 for i in 0 to width -1 loop
 loopXor := loopXor xor data(i);
 end loop;

 parity <= loopXor;

 end process;

end oddParityGen_arch;

139

===
 MBUS Desire / Grant Arbitrator <grant_logic.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: MBUS Grant Arbitrator
 Description: State machine that provides rotating priority logic to determine the

next user of the MBUS. The component analyzes the MBUS
Request signals from the 3 MBUS users and provides MBUS
Grant signals to the appropriate user. The priority is a rotating type
that ensures that each user has equal access to the bus based upon
the previous user.

 Author: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 25 October 2002
 Modified: 7 November 2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Foundation 4.2i
 Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use IEEE.std_logic_unsigned.all;
--use IEEE.std_logic_arith.all;

package Grant is

component Grant_Logic
 port (
 M_Desire_Ext: in UNSIGNED (1 downto 0);
 M_Desire_Proc: in STD_LOGIC;

140

 M_Grant_Ext: out UNSIGNED (1 downto 0);
 M_Grant_Proc: out STD_LOGIC;
 Clk: in STD_LOGIC;
 Rst: in STD_LOGIC
);
end component;

end package Grant;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use IEEE.std_logic_unsigned.all;
--use IEEE.std_logic_arith.all;

entity Grant_Logic is
 port (
 M_Desire_Ext: in UNSIGNED (1 downto 0);
 M_Desire_Proc: in STD_LOGIC;
 M_Grant_Ext: out UNSIGNED (1 downto 0);
 M_Grant_Proc: out STD_LOGIC;
 Clk: in STD_LOGIC;
 Rst: in STD_LOGIC
);
end Grant_Logic;

architecture Grant_Logic_arch of Grant_Logic is

type FSM_type is (Idle,Grant);
signal Curr_State, Next_State : FSM_Type;
signal User : UNSIGNED (1 downto 0);
signal Pri_0,Pri_1,Pri_2 : UNSIGNED (1 downto 0);

signal M_Desire_Int : UNSIGNED (2 downto 0);
signal M_Grant_Int : UNSIGNED (2 downto 0);

begin

M_Desire_Int(1) <= M_Desire_Ext(1);
M_Desire_Int(0) <= M_Desire_Ext(0);
M_Desire_Int(2) <= M_Desire_Proc;

M_Grant_Ext(1) <= M_Grant_Int(1);
M_Grant_Ext(0) <= M_Grant_Int(0);
M_Grant_Proc <= M_Grant_Int(2);

141

nxtStProc: process(Curr_State,Next_State, M_Desire_Int, User)

 begin

 case Curr_State is

 when Idle =>

 if M_Desire_Int /= "111" then
 Next_State <= Grant;
 else
 Next_State <= Idle;
 end if;

 when Grant =>
 if (M_Desire_Int(to_integer(User)) = '0') then
 Next_State <= Grant;
 else
 Next_State <= Idle;
 end if;

 when others =>
 null;

 end case;
 end process nxtStProc;

--Process to register current state

 curStProc: process (Clk, Rst)
 begin
 if (Rst = '0') then
 Curr_State <= Idle;
 elsif (Clk'event and Clk ='1') then
 Curr_State <= Next_State;
 end if;
 end process curStProc;

--Process to generate outputs

 outConProc: process(Curr_State,M_Desire_Int,Pri_0,Pri_1,Pri_2,User)

 begin

142

 case Curr_State is

 when Idle =>
 M_Grant_Int <= "000";

 --to handle Reset
 if (Pri_0 = Pri_1) then
 if ((M_Desire_Int(0)) = '0')then
 User <= "00";
 elsif ((M_Desire_Int(1)) = '0')then
 User <= "01";
 elsif ((M_Desire_Int(2)) = '0')then
 User <= "10";
 end if;
 elsif (M_Desire_Int(to_integer(Pri_0)) = '0')then
 User <= Pri_0;
 elsif (M_Desire_Int(to_integer(Pri_1)) = '0')then
 User <= Pri_1;
 elsif (M_Desire_Int(to_integer(Pri_2)) = '0')then
 User <= Pri_2;
 end if;

 when Grant =>
 M_Grant_Int(to_integer(User)) <= '1';

 if User = "00" then
 Pri_0 <= "01";
 Pri_1 <= "10";
 Pri_2 <= "00";
 elsif User = "01" then
 Pri_0 <= "10";
 Pri_1 <= "00";
 Pri_2 <= "01";
 elsif User = "10" then
 Pri_0 <= "00";
 Pri_1 <= "01";
 Pri_2 <= "10";
 else
 Pri_0 <= "00";
 Pri_1 <= "01";
 Pri_2 <= "10";
 end if;

 when others =>

143

 null;

 end case;

 end process outConProc;

end Grant_Logic_arch;

144

===
 MBUS Controller <mbus_controller.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: MBUS Controller
 Description: State Machine that controls the MBUS interface. It determines the

user of the bus via the Grant_Logic component and generates the
appropriate control signals for operation of the Bus for reads and
writes both to OBM by an external user as well as reads and writes
to external memory by the Processor. It also generates and
validates the appropriate parity signals.

 Author: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School
 Created: 25 October 2002
 Modified: 23 November 2002
 Simulated: 27 November 2002
 Target: XCV1000E FG1156
 Software: Foundation 4.2i
 Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use WORK.Grant.all;
use WORK.common.all;
use WORK.oddParity.all;
--use IEEE.std_logic_arith.all;

package MBUS_CTRL is

component MBUS_Controller
 generic(
 FREQ: natural := 40_000 -- operating frequency in KHz

145

);
 port (
 Clk: in std_logic;
 Rst: in std_logic;
 -- Signals from Processor
 P_Data_WR: in unsigned(31 downto 0);
 P_Data_RD: out unsigned(31 downto 0);
 P_Addr: in unsigned(22 downto 0);
 P_RD_Req: in std_logic;
 P_WR_Req: in std_logic;
 P_Desire_L: in std_logic;
 P_Mem_Done: out STD_LOGIC;
 P_Grant_Out: out std_logic; --Grant signal to Processor

 -- Signals from Memory Arbitrator
 Mem_Addr: out unsigned(22 downto 0);
 Mem_Data_WR: out unsigned(31 downto 0);
 Mem_Data_RD: in unsigned(31 downto 0);
 Mem_WR_Req: out std_logic;
 Mem_RD_Req: out std_logic;
 Mem_Done: in std_logic;
 -- Signals on/off Adapter
 M_BUS: inout unsigned(22 downto 0);
 --M_GRANT_IN_L: in std_logic; Used only when used as Slave
 M_DESIRE_IN_L: in unsigned(1 downto 0);
 M_GRANT_OUT: out unsigned(1 downto 0);
 --M_DESIRE_OUT_L: out std_logic;--Used only when VPM used as Slave
 M_REQUEST_L: inout std_logic;
 M_ACKNOWLEDGE_L:in std_logic;
 M_RESUME_L: inout std_logic;
 S_BUSY_L: out std_logic;
 M_BUSY_L: inout std_logic;
 BUS_ERROR_L: inout std_logic;
 --Parity Bits
 LSB_PARITY: inout std_logic;
 MSB_PARITY: inout std_logic;
 ADRS_PARITY: inout std_logic;
 CMD_PARITY: inout std_logic;
 --Control Bits
 MSB_WRITE_L: inout std_logic;
 LSB_WRITE_L: inout std_logic;
 THREE_TWO_DATA: inout std_logic;
 IPL_WRITE: inout std_logic;

 --Signals used for Testing Only
 Timer_Out: out unsigned(log2(9+1)-1 downto 0);

146

 Timer_next_Out: out unsigned(log2(9+1)-1 downto 0);
 M_ACKNOWLEDGE_L_test_Out: out std_logic

);
end component;

end MBUS_Ctrl;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use WORK.Grant.all;
use WORK.Common.all;
use WORK.oddParity.all;--use IEEE.std_logic_arith.all;

entity MBUS_Controller is
 generic(
 FREQ: natural := 40_000 -- operating frequency in KHz
);
 port (
 Clk: in std_logic;
 Rst: in std_logic;
 -- Signals from Processor
 P_Data_WR: in unsigned(31 downto 0);
 P_Data_RD: out unsigned(31 downto 0);
 P_Addr: in unsigned(22 downto 0);
 P_RD_Req: in std_logic;
 P_WR_Req: in std_logic;
 P_Desire_L: in std_logic;
 P_Mem_Done: out STD_LOGIC;
 P_Grant_Out: out std_logic; --Grant signal to Processor

 -- Signals from Memory Arbitrator
 Mem_Addr: out unsigned(22 downto 0);
 Mem_Data_WR: out unsigned(31 downto 0);
 Mem_Data_RD: in unsigned(31 downto 0);
 Mem_WR_Req: out std_logic;
 Mem_RD_Req: out std_logic;
 Mem_Done: in std_logic;
 -- Signals on/off Adapter
 M_BUS: inout unsigned(22 downto 0);
-- M_GRANT_IN_L: in std_logic; --Used only when VPM used as Slave
 M_DESIRE_IN_L: in unsigned(1 downto 0);
 M_GRANT_OUT: out unsigned(1 downto 0);
-- M_DESIRE_OUT_L: out std_logic;--Used only when VPM used as Slave
 M_REQUEST_L: inout std_logic;

147

 M_ACKNOWLEDGE_L:in std_logic;
 M_RESUME_L: inout std_logic;
 S_BUSY_L: out std_logic;
 M_BUSY_L: inout std_logic;
 BUS_ERROR_L: inout std_logic;
 --Parity Bits
 LSB_PARITY: inout std_logic;--Odd Parity for Bits MBUS(0:7)
 MSB_PARITY: inout std_logic;--Odd Parity for Bits MBUS(8:15)
 ADRS_PARITY: inout std_logic;--Odd Parity for Bits MBUS(16:22)
 CMD_PARITY: inout std_logic;--Odd Parity for
 --MSB_Write/LSB_Write/32_Bit_Data/IPL_Write
 --Control Bits
 MSB_WRITE_L: inout std_logic;
 LSB_WRITE_L: inout std_logic;
 THREE_TWO_DATA: inout std_logic;
 IPL_WRITE: inout std_logic;

 --Signals used for Testing Only
 Timer_Out: out unsigned(log2(8+1)-1 downto 0);
 Timer_Next_Out: out unsigned(log2(8+1)-1 downto 0);
 M_ACKNOWLEDGE_L_test_Out: out std_logic
);
end MBUS_Controller;

architecture MBUS_Controller_arch of MBUS_Controller is

--constants

constant Mem_Blk_1_L : natural := 1048576 ;
--Lower bound of VPM Master OBM (100000H)
constant Mem_Blk_1_H : natural := 2097151 ;
--Upper bound of VPM Master OBM (1FFFFFH)
constant Mem_Blk_1_Up_Bits : unsigned(2 downto 0) := "001";
--Bits 22-20 of Address = 001 if in Blk 1
constant Mem_Blk_2_L : natural := 2097152 ;
--Lower bound of VPM Slave1 OBM (200000H)
constant Mem_Blk_2_H : natural := 3145727 ;
--Upper bound of VPM Slave1 OBM (2FFFFFH)

constant MAX_DELAY: natural := 200;
-- Max Delay interval (ns) (Changed for testing only)
constant TIMER_CYCLES: natural := 1 + ((MAX_DELAY * FREQ) / 1000000);
-- ACK Signal Max Delay (20ns)

--Constants for Clarity of Code
constant ACTIVE: std_logic := '1';

148

constant ACTIVE_L: std_logic := '0'; --For active low signal
constant INACTIVE: std_logic := '0';
constant INACTIVE_L: std_logic := '1'; --For active low signal

signal Timer, Timer_next: unsigned(log2(TIMER_CYCLES+1)-1 downto 0);
-- current Delay time

--All signals tied to input/output have same name with _Int addended

signal Clk_Int : std_logic;
signal Rst_Int : std_logic;
signal P_Grant_Int: std_logic; --Signal used for Processor Grant Indication
signal M_BUS_Int: unsigned(22 downto 0); --INOUT
signal M_BUS_Read: unsigned(22 downto 0);
signal P_Data_WR_Int: unsigned(31 downto 0);
signal P_Data_RD_Int: unsigned(31 downto 0);
signal P_Addr_Int: unsigned(22 downto 0);
signal P_RD_Req_Int: std_logic;
signal P_WR_Req_Int: std_logic;
--Signals used for Grant_Logic
signal M_GRANT_OUT_Int: unsigned(1 downto 0);
signal M_Grant_Proc_Int: std_logic;
--Signals used for control logic
signal M_DESIRE_IN_L_Int: unsigned(1 downto 0);
signal M_REQUEST_L_Int: std_logic; --INOUT
signal M_ACKNOWLEDGE_L_Int: std_logic;
signal M_RESUME_L_Int: std_logic; --INOUT
signal MSB_WRITE_L_Int: std_logic; --INOUT
signal LSB_WRITE_L_Int: std_logic; --INOUT
signal THREE_TWO_DATA_Int: std_logic; --INOUT
signal IPL_WRITE_Int: std_logic; --INOUT
signal M_BUSY_L_Int: std_logic; --INOUT
signal Mem_DONE_Int: std_logic;
signal S_BUSY_L_Int: std_logic;
signal Mem_Addr_Int: unsigned(22 downto 0);
signal BUS_ERROR_L_Int: std_logic;
--Signal used for timeout
signal Time_Out: std_logic;
--Signal to indicate Parity Error
signal Parity_Error_Int: std_logic;
--Signals for parity generation for External drivers of signals
signal LSB_Parity_Generate_Input: std_logic;
signal MSB_Parity_Generate_Input: std_logic;
signal ADRS_Parity_Generate_Input: std_logic;
signal CMD_Parity_Generate_Input: std_logic;
--Signals for parity generation for Internal drivers of signals

149

signal LSB_Parity_Generate_Output: std_logic;
signal MSB_Parity_Generate_Output: std_logic;
signal ADRS_Parity_Generate_Output: std_logic;
signal CMD_Parity_Generate_Output: std_logic;
--Signals for parity input
signal LSB_Parity_Int: std_logic; --INOUT
signal MSB_Parity_Int: std_logic; --INOUT
signal ADRS_Parity_Int: std_logic; --INOUT
signal CMD_Parity_Int: std_logic; --INOUT
--Signal for Parity Generator Format
signal ADRS_Parity_Input: unsigned(7 downto 0);
signal ADRS_Parity_Output:unsigned(7 downto 0);
signal CMD_Parity_Input: unsigned(7 downto 0);
signal CMD_Parity_Output: unsigned(7 downto 0);

--Signal to drive INOUTS
signal Drive_MBUS: std_logic;
signal Drive_Resume: std_logic;
signal Drive_Request: std_logic;
signal Drive_M_Busy: std_logic;
signal Drive_Bus_Error: std_logic;
signal Drive_LSB_Parity: std_logic;
signal Drive_MSB_Parity: std_logic;
signal Drive_ADRS_Parity: std_logic;
signal Drive_CMD_Parity: std_logic;
signal Drive_MSB_Write: std_logic;
signal Drive_LSB_Write: std_logic;
signal Drive_Three_Two_Data: std_logic;
signal Drive_IPL_Write: std_logic;

--Signals to Latch
signal M_ACKNOWLEDGE_L_test:std_logic;
signal Mem_Data_RD_Int: unsigned(31 downto 0);
signal Mem_Data_WR_Int: unsigned(31 downto 0);
signal Mem_Data_WR_Int_Out: unsigned(31 downto 0);
--Latch Driver Signals
signal M_ACK_Latch: std_logic;
signal P_DATA_RD_Latch: std_logic;
signal M_Addr_Latch: std_logic;
signal Mem_Data_RD_Latch: std_logic;
signal Mem_Data_WR_Latch: std_logic;

150

type FSM_type is
(Idle, Addr_Out_M,Req_M, Ack_Read_M, Data_Clk_In_M, Rsm_Read_M,
Ack_Write_M, Data_Clk_Out_M, Rsm_Write_M,
Req_Read_S,AddClkIn_Read_S, Ack_Read_S, Rsm_Read_S, Read_Done_S,
Req_Write_S, AddClkIn_Write_S, Ack_Write_S, Write_Data_S, Rsm_Write_S,
Write_Done_S,Error_Internal, Error_External);

 --Req_M - if Master has use of MBUS
 --Req_Write_S - if slave has use of MBUS for Write Operation
 --Req_Read_S - if slave has use of MBUS for Read Operation
 --Ack_Read_M - Acknowlege Phase of a Master read operation
 --Data_Clk_In_M - State that clocks in Data off BUS
 --Ack_Write_M - Acknowlege Phase of a Master write operation
 --Ack_Read_S - Acknowlege Phase of a Slave read operation
 --Ack_Write_S - Acknowlege Phase of a Slave write operation
 --Rsm_Read_M - Resume Phase of a Master read operation
 --Rsm_Write_M - Resume Phase of a Master write operation
 --Data_Clk_Out_M - Clock Out the Data to be written
 --Rsm_Write_S - Resume Phase of a slave read operation
 --Rsm_Read_S - Resume Phase of a slave write operation
 --Error_Internal- Error state caused by Internal Error
 --Error_External- Error state caused by External Error
 --AddCLkIn_Read_S- Clock in Address for Read operation
 --AddClkIn_Write_S- Clock in Address for Write operation
 --Read_Done_S - Data removed from bus but bus not available yet
 --DataClkIn_Write_S - Clock in data to write to memory
 --Write_Data_S - Wait state for data to be written to memory
 --Write_Done_S - Wait state for completion of Write operation
 --Addr_Out_M - Wait 1 clock after puting address on Bus to
 --drive Request Signal

signal Curr_State, Next_State : FSM_Type;

begin

--Connect all appropriate signals
Clk_Int <= Clk;
Rst_Int <= Rst;
M_GRANT_OUT <= M_GRANT_OUT_Int;
--Connect Grant signals to output port
--P_RD_Req_Int <= P_RD_Req;
--P_WR_Req_Int <= P_WR_Req;
P_Addr_Int <= P_Addr;
P_Data_WR_Int <= P_Data_WR;
P_Grant_Out <= M_Grant_Proc_Int;
M_DESIRE_IN_L_Int <= M_DESIRE_IN_L;

151

M_ACKNOWLEDGE_L_Int <= M_ACKNOWLEDGE_L;
S_BUSY_L <= S_BUSY_L_Int;
Mem_Data_WR <= Mem_Data_WR_Int_Out;
Mem_DONE_Int <= Mem_DONE;
M_BUS_Read <= M_BUS;
Mem_Addr <= Mem_Addr_Int;

--Tristates for INOUTs

M_RESUME_L <= M_RESUME_L_Int when Drive_Resume = ACTIVE else ('Z');
M_BUS <= M_BUS_Int when Drive_MBUS = ACTIVE else (others =>'Z');
M_REQUEST_L <= M_REQUEST_L_Int when Drive_Request = ACTIVE else ('Z');
M_BUSY_L <= M_BUSY_L_Int when Drive_M_Busy = ACTIVE else ('Z');
LSB_PARITY <= LSB_PARITY_Int when Drive_LSB_Parity = ACTIVE else ('Z');
MSB_PARITY <= MSB_PARITY_Int when Drive_MSB_Parity = ACTIVE else ('Z');
ADRS_PARITY <= ADRS_PARITY_Int when Drive_ADRS_Parity = ACTIVE else
('Z');
CMD_PARITY <= CMD_PARITY_Int when Drive_CMD_Parity = ACTIVE else ('Z');
MSB_WRITE_L <= MSB_WRITE_L_Int when Drive_MSB_Write = ACTIVE else
('Z');
LSB_WRITE_L <= LSB_WRITE_L_Int when Drive_LSB_Write = ACTIVE else ('Z');
THREE_TWO_DATA <= THREE_TWO_DATA_Int when Drive_Three_Two_Data =
ACTIVE else ('Z');
IPL_WRITE <= IPL_WRITE_Int when Drive_IPL_Write = ACTIVE else ('Z');
BUS_ERROR_L <= BUS_ERROR_L_Int when Drive_Bus_Error = ACTIVE else
('Z');

--Latch Signals
P_DATA_RD_Int <= ("0000000000000000" & M_Bus(15 downto 0)) when
P_DATA_RD_Latch = ACTIVE else P_DATA_RD_Int;
P_Data_RD <= P_Data_RD_Int;
Mem_Addr_Int <= M_BUS when M_Addr_Latch = ACTIVE else Mem_Addr_Int;
Mem_Data_RD_Int <= Mem_Data_RD when Mem_Data_RD_Latch = ACTIVE else
Mem_Data_RD_Int;
Mem_Data_WR_Int_Out <= Mem_Data_WR_Int when Mem_Data_WR_Latch =
ACTIVE else Mem_Data_WR_Int_Out;

--Signals for Testing only
Timer_Out <= Timer;
Timer_Next_Out <= Timer_Next;
--Latch Test
M_ACKNOWLEDGE_L_test <= M_ACKNOWLEDGE_L when M_ACK_Latch =
ACTIVE else M_ACKNOWLEDGE_L_test;
M_ACKNOWLEDGE_L_test_Out <= M_ACKNOWLEDGE_L_test;

--Assigning Signals for Parity Generator

152

ADRS_Parity_Input <= M_BUS_Int(22 downto 16) & "0";
ADRS_Parity_Output <= P_Addr_Int(22 downto 16) & "0";
CMD_Parity_Input <= MSB_WRITE_L & LSB_WRITE_L & THREE_TWO_DATA &
IPL_WRITE & "0000";
CMD_Parity_Output <= MSB_WRITE_L_Int & LSB_WRITE_L_Int &
THREE_TWO_DATA_Int & IPL_WRITE_Int & "0000";

--Instantiate Grant Logic Module
 u0: Grant_logic port map (M_Desire_Ext => M_DESIRE_IN_L_Int,

M_Desire_Proc => P_Desire_L,
M_Grant_Ext => M_GRANT_OUT_Int ,
 --Grant Signal to external signal
M_Grant_Proc => M_Grant_Proc_Int ,
 --Grant Signal to internal signal

 Clk => Clk_Int,
 Rst => Rst_Int
);

--Instantiate Parity Generator
 --LSB Parity for Input
 u1: oddParityGen port map (
 data => M_BUS_Int(7 downto 0),
 parity => LSB_Parity_Generate_Input
);

 u2: oddParityGen port map (
 data => P_Addr_Int(7 downto 0),
 parity => LSB_Parity_Generate_Output
);
 --MSB Parity for Input
 u3: oddParityGen port map (
 data => M_BUS_Int(15 downto 8),
 parity => MSB_Parity_Generate_Input
);

 u4: oddParityGen port map (
 data => P_Addr_Int(15 downto 8),
 parity => MSB_Parity_Generate_Output
);
 --ADRS Parity for Input
 u5: oddParityGen port map (
 data => ADRS_Parity_Input,
 parity => ADRS_Parity_Generate_Input
);

 u6: oddParityGen port map (

153

 data => ADRS_Parity_Input,
 parity => ADRS_Parity_Generate_Output
);
 --CMD Parity for Input
 u7: oddParityGen port map (
 data => CMD_Parity_Input,
 parity => CMD_Parity_Generate_Input
);

 --CMD Parity for Output
 u8: oddParityGen port map (
 data => CMD_Parity_Output,
 parity => CMD_Parity_Generate_Output
);

--Next State Conditioning Logic (Process 1)

nxtStProc: process(Curr_State,Timer,Timer_next,BUS_ERROR_L,M_DESIRE_IN_L,

Mem_DONE,LSB_WRITE_L,CMD_Parity,
M_RESUME_L,M_Grant_Proc_Int,MSB_Parity_Generate_Input,LSB_Pa
rity_Generate_Input,M_BUSY_L,M_BUS_Read,M_BUS_Int,M_BUS,
MSB_WRITE_L,Time_Out,P_RD_Req,CMD_Parity_Generate_Input,P_
WR_Req,MSB_Parity,
ADRS_Parity_Generate_Input,M_REQUEST_L,M_ACKNOWLEDGE_
L_Int,M_GRANT_OUT_Int,LSB_Parity,
ADRS_Parity,M_DESIRE_IN_L_Int)

 begin

 case Curr_State is

 when Idle =>
 --Go to Master states if processor has been granted bus use
 if M_Grant_Proc_Int = ACTIVE then
 next_state <= Addr_Out_M;
 Timer_Next <= TO_UNSIGNED(TIMER_CYCLES,Timer'length);
 --Start Timer
 --If Slave has bus use AND address in OBM range AND Write signals are active
GOTO Slave Write states
 elsif ((M_GRANT_OUT_Int(0) = ACTIVE or M_GRANT_OUT_Int(1) =
ACTIVE) and M_REQUEST_L = ACTIVE_L and (M_BUS(22 downto 20) =
Mem_Blk_1_Up_Bits) and MSB_WRITE_L = ACTIVE_L
 and LSB_WRITE_L = ACTIVE_L) then
 --Check Parity

154

 if (LSB_Parity_Generate_Input = LSB_Parity and MSB_Parity_Generate_Input =
MSB_Parity and CMD_Parity_Generate_Input = CMD_Parity and
ADRS_Parity_Generate_Input = ADRS_Parity) then
 next_state <= Req_Write_S;
 Timer_Next<= TO_UNSIGNED(TIMER_CYCLES,Timer'length); --Start Timer
 else
 next_state <= Error_Internal;
 end if;
 --If Slave has bus use AND address in OBM range AND Write signals are
INACTIVE GOTO Slave Write states
 elsif ((M_GRANT_OUT_Int(0) = ACTIVE or M_GRANT_OUT_Int(1) =
ACTIVE) and M_REQUEST_L = ACTIVE_L and (M_BUS(22 downto 20) =
Mem_Blk_1_Up_Bits) and MSB_WRITE_L = INACTIVE_L and LSB_WRITE_L =
INACTIVE_L) then
 --Check Parity
 if (LSB_Parity_Generate_Input = LSB_Parity and MSB_Parity_Generate_Input =
MSB_Parity and CMD_Parity_Generate_Input = CMD_Parity and
ADRS_Parity_Generate_Input = ADRS_Parity) then
 next_state <= Req_Read_S;
 Timer_Next<= TO_UNSIGNED(TIMER_CYCLES,Timer'length); --Start Timer
 else
 next_state <= Error_Internal;
 end if;
 else
 next_state <= Idle;
 end if;
--States for Master Bus Usage
 when Addr_Out_M =>
 next_state <= Req_M;

 when Req_M =>
 if (M_ACKNOWLEDGE_L_Int = ACTIVE_L) then
 if (P_RD_Req = ACTIVE) then
 next_state <= Ack_Read_M;
 elsif (P_WR_Req = ACTIVE) then
 next_state <= Ack_Write_M;
 end if;
 elsif (BUS_ERROR_L = ACTIVE_L) then
 next_state <= Error_External;

 elsif (Time_Out = ACTIVE and M_ACKNOWLEDGE_L_Int = INACTIVE_L)
 then

 next_state <= Error_Internal;
 else
 next_state <= Req_M;
 end if;
 --States for Master Read

155

 when Ack_Read_M =>
 --if (M_RESUME_L_Int = ACTIVE_L) then
 if (M_RESUME_L = ACTIVE_L) then
 next_state <= Data_Clk_In_M;
 else
 next_state <= Ack_Read_M;
 end if;

 when Data_Clk_In_M =>
 next_state <= Rsm_Read_M;

 when Rsm_Read_M =>

 if (M_ACKNOWLEDGE_L_Int = INACTIVE_L) then
 next_state <= Idle;
 else
 next_state <= Rsm_Read_M;
 end if;

 --States for Master Write
 when Ack_Write_M =>
 next_state <= Data_Clk_Out_M;

 when Data_Clk_Out_M =>

 if (M_RESUME_L = ACTIVE_L) then
 next_state <= Rsm_Write_M;
 else
 next_state <= Data_Clk_Out_M;
 end if;

 when Rsm_Write_M =>

 if (M_ACKNOWLEDGE_L_Int = INACTIVE_L) then
 next_state <= Idle;
 else
 next_state <= Rsm_Write_M;
 end if;

--States for External user of MBUS

--States for a Slave Read
 when Req_Read_S =>
 next_state <= AddCLkIn_Read_S;

 when AddCLkIn_Read_S =>

156

 if (Mem_DONE = ACTIVE) then
 next_state <= Ack_Read_S;
 else
 next_state <= AddCLkIn_Read_S;
 end if;

 when Ack_Read_S =>
 if (M_REQUEST_L = INACTIVE_L) then
 next_state <= Rsm_Read_S;
 else
 next_state <= Ack_Read_S;
 end if;

 when Rsm_Read_S =>
 if (M_BUSY_L = INACTIVE_L) then
 next_state <= Read_Done_S;
 else
 next_state <= Rsm_Read_S;
 end if;

 when Read_Done_S =>
 next_state <= Idle;

--States for Slave Write

 when Req_Write_S =>
 next_state <= AddClkIn_Write_S;

 when AddClkIn_Write_S =>
 if (M_REQUEST_L = INACTIVE_L) then
 next_state <= Ack_Write_S;
 else
 next_state <= AddClkIn_Write_S;
 end if;

 when Ack_Write_S =>
 next_state <= Write_Data_S;

 when Write_Data_S =>
 if (Mem_DONE = ACTIVE) then
 next_state <= Rsm_Write_S;
 else
 next_state <= Write_Data_S;
 end if;

 when Rsm_Write_S =>

157

 if (M_BUSY_L = INACTIVE_L) then
 next_state <= Write_Done_S;
 else
 next_state <= Rsm_Write_S;
 end if;

 when Write_Done_S =>
 next_state <= Idle;

-- States for errors
 when Error_Internal =>
 if ((M_DESIRE_IN_L(0) = INACTIVE_L and M_GRANT_OUT_Int(0) =
INACTIVE) or (M_DESIRE_IN_L(1) = INACTIVE_L and M_GRANT_OUT_Int(1) =
INACTIVE)) then
 next_state <= Idle;
 else
 next_state <= Error_Internal;
 end if;

 when Error_External =>
 if (BUS_ERROR_L = INACTIVE_L) then
 next_state <= Idle;
 else
 next_state <= Error_External;
 end if;

 when others =>
 null;

 end case;

 --Timer will count down after being started by leaving Idle State
 case Curr_State is

 when Idle =>
 null;

 when others =>

 if Timer /= TO_UNSIGNED(0,Timer'length) then
 Timer_next <= Timer - 1;
 Time_Out <= INACTIVE;
 else
 --Timer_next <= Timer;
 Time_Out <= ACTIVE;

158

 end if;
 end case;

 end process nxtStProc;

--Current State Vector Register (Process 2)

 curStProc: process (Clk_Int, Rst_Int)
 begin
 if (Rst_Int = '0') then
 Curr_State <= Idle;
 elsif (Clk_Int'event and Clk_Int ='1') then
 Curr_State <= Next_State;
 Timer <= Timer_next;
 end if;
 end process curStProc;

--Output Conditioning Logic (Process 3)
 outConProc:
process(Curr_State,Mem_Data_RD_Int,MSB_Parity_Generate_Input,M_BUS_Int,LSB_
Parity_Generate_Input,P_RD_Req,CMD_Parity_Generate_Input,ADRS_Parity_Generate
_Input,P_Data_WR_Int,P_Addr_Int,LSB_Parity_Generate_Output,MSB_Parity_Generat
e_Output,ADRS_Parity_Generate_Output, CMD_Parity_Generate_Output,M_BUS)

 begin
 --Default Signal to drive all Tristates High Z
 Drive_MBUS <= INACTIVE;
 M_RESUME_L_Int <= INACTIVE_L;
 Drive_Resume <= INACTIVE;
 M_REQUEST_L_Int <= INACTIVE_L;
 Drive_Request <= INACTIVE;
 M_BUSY_L_Int <= INACTIVE_L;
 Drive_M_Busy <= INACTIVE;
 BUS_ERROR_L_Int <= INACTIVE;
 Drive_Bus_Error <= INACTIVE;
 LSB_PARITY_Int <= INACTIVE;
 Drive_LSB_Parity <= INACTIVE;
 MSB_PARITY_Int <= INACTIVE;
 Drive_MSB_Parity <= INACTIVE;
 ADRS_PARITY_Int <= INACTIVE;
 Drive_ADRS_Parity <= INACTIVE;
 CMD_PARITY_Int <= INACTIVE;
 Drive_CMD_Parity <= INACTIVE;
 MSB_WRITE_L_Int <= INACTIVE;
 Drive_MSB_Write <= INACTIVE;

159

 LSB_WRITE_L_Int <= INACTIVE;
 Drive_LSB_Write <= INACTIVE;
 THREE_TWO_DATA_Int <= INACTIVE;
 Drive_Three_Two_Data <= INACTIVE;
 IPL_WRITE_Int <= INACTIVE;
 Drive_IPL_Write <= INACTIVE;
 --Drive all outs inactive
 S_BUSY_L_Int <= INACTIVE_L;
 P_Mem_Done <= INACTIVE;
 Mem_WR_Req <= INACTIVE;
 Mem_RD_Req <= INACTIVE;
 --Latch Drivers
 M_ACK_Latch <= INACTIVE;
 P_DATA_RD_Latch <= INACTIVE;
 Mem_Data_RD_Latch <= INACTIVE;
 Mem_Data_WR_Latch <= INACTIVE;
 M_Addr_Latch <= INACTIVE;

 case Curr_State is

 when Idle =>
 null;

--States for Master Operations

 when Addr_Out_M =>
 M_BUS_Int <= P_Addr_Int; --Put Address on Bus
 Drive_MBUS <= ACTIVE;
 --Command Signals
 Drive_MSB_Write <= ACTIVE;
 Drive_LSB_Write <= ACTIVE;
 MSB_WRITE_L_Int <= P_RD_Req;
 LSB_WRITE_L_Int <= P_RD_Req;
--This signal is active low. The RD signal is active high,therfore
--when the write signal is active, the read signal will be low.
 Drive_Three_Two_Data <= ACTIVE;
 THREE_TWO_DATA_Int <= INACTIVE;
 Drive_IPL_Write <= ACTIVE;
 IPL_WRITE_Int <= INACTIVE;
 --Assign Parity Values
 Drive_MSB_Parity <= ACTIVE;
 MSB_PARITY_Int <= MSB_Parity_Generate_Output;
 Drive_LSB_Parity <= ACTIVE;
 LSB_PARITY_Int <= LSB_Parity_Generate_Output;
 Drive_ADRS_Parity <= ACTIVE;

160

 ADRS_PARITY_Int <= ADRS_Parity_Generate_Output;
 Drive_CMD_Parity <= ACTIVE;
 CMD_PARITY_Int <= CMD_Parity_Generate_Output;

 when Req_M =>
 --Bus Control Signals
 M_BUS_Int <= P_Addr_Int; --Put Address on Bus
 Drive_MBUS <= ACTIVE;

 Drive_Request <= ACTIVE;
 M_REQUEST_L_Int <= ACTIVE_L;
--Drive the control signal low to indicate Address is valid
 Drive_MSB_Parity <= ACTIVE;
 MSB_PARITY_Int <= MSB_Parity_Generate_Output;
 Drive_LSB_Parity <= ACTIVE;
 LSB_PARITY_Int <= LSB_Parity_Generate_Output;
 Drive_ADRS_Parity <= ACTIVE;
 ADRS_PARITY_Int <= ADRS_Parity_Generate_Output;
 Drive_CMD_Parity <= ACTIVE;
 CMD_PARITY_Int <= CMD_Parity_Generate_Output;
 Drive_MSB_Write <= ACTIVE;
 Drive_LSB_Write <= ACTIVE;
 MSB_WRITE_L_Int <= P_RD_Req;
 LSB_WRITE_L_Int <= P_RD_Req;
--This signal is active low. The RD signal is active high,therfore
--when the write signal is active, the read signal will be low.
 Drive_Three_Two_Data <= ACTIVE;
 THREE_TWO_DATA_Int <= INACTIVE;
 Drive_IPL_Write <= ACTIVE;
 IPL_WRITE_Int <= INACTIVE;

 M_ACK_Latch <= ACTIVE;

--State for Master Read
 when Ack_Read_M =>
 --Activate M_Busy Signal
 Drive_M_Busy <= ACTIVE;
 M_BUSY_L_Int <= ACTIVE_L;

 when Data_Clk_In_M =>
 P_Data_RD_Latch <= ACTIVE;
 Drive_M_Busy <= ACTIVE;
 M_BUSY_L_Int <= ACTIVE_L;

 when Rsm_Read_M =>
 P_Mem_Done <= ACTIVE;

161

 Drive_M_Busy <= ACTIVE;
 M_BUSY_L_Int <= INACTIVE_L;

--States for Master Write
 when Ack_Write_M =>
 Drive_Request <= ACTIVE;
 M_REQUEST_L_Int <= ACTIVE_L;
 Drive_MSB_Write <= ACTIVE;
 Drive_LSB_Write <= ACTIVE;
 MSB_WRITE_L_Int <= P_RD_Req;
 LSB_WRITE_L_Int <= P_RD_Req;
 Drive_MSB_Parity <= ACTIVE;
 MSB_PARITY_Int <= MSB_Parity_Generate_Output;
 Drive_LSB_Parity <= ACTIVE;
 LSB_PARITY_Int <= LSB_Parity_Generate_Output;

 Drive_M_Busy <= ACTIVE;
 M_BUSY_L_Int <= ACTIVE_L;
 --Drve the MBUS with data
 Drive_MBUS <= ACTIVE;
 M_BUS_Int <= ("0000000" & P_Data_WR_Int(15 downto 0));

 when Data_Clk_Out_M =>
 Drive_MSB_Parity <= ACTIVE;
 Drive_MSB_Write <= ACTIVE;
 Drive_LSB_Write <= ACTIVE;
 MSB_WRITE_L_Int <= P_RD_Req;
 LSB_WRITE_L_Int <= P_RD_Req;
 MSB_PARITY_Int <= MSB_Parity_Generate_Output;
 Drive_LSB_Parity <= ACTIVE;
 LSB_PARITY_Int <= LSB_Parity_Generate_Output;
 Drive_M_Busy <= ACTIVE;
 M_BUSY_L_Int <= ACTIVE_L;
 Drive_MBUS <= ACTIVE;
 M_BUS_Int <= ("0000000" & P_Data_WR_Int(15 downto 0));

 when Rsm_Write_M =>
 P_Mem_Done <= ACTIVE;
 Drive_MSB_Write <= ACTIVE;
 MSB_WRITE_L_Int <= INACTIVE_L;
 Drive_LSB_Write <= ACTIVE;
 LSB_WRITE_L_Int <= INACTIVE_L;
 Drive_M_Busy <= ACTIVE;
 M_BUSY_L_Int <= INACTIVE_L;
 --M_BUS_Int <= (others => 'Z');

162

--States for External user of MBUS

--States for Slave Read
 when Req_Read_S =>
 M_Addr_Latch <= ACTIVE;
 Mem_RD_Req <= ACTIVE;

 when AddCLkIn_Read_S =>
 Mem_RD_Req <= ACTIVE;
 Mem_Data_RD_Latch <= ACTIVE;--Latches Data off of SDRAM
 S_BUSY_L_Int <= ACTIVE_L; --Notify user that address is clocked in

 when Ack_Read_S =>
 Drive_MBUS <= ACTIVE;
 M_BUS_Int <= ("0000000" & Mem_Data_RD_Int(15 downto 0));
 Drive_MSB_Parity <= ACTIVE;
 MSB_PARITY_Int <= MSB_Parity_Generate_Output;
 Drive_LSB_Parity <= ACTIVE;
 LSB_PARITY_Int <= LSB_Parity_Generate_Output;
 S_BUSY_L_Int <= ACTIVE_L;

 when Rsm_Read_S =>
 Drive_MBUS <= ACTIVE;
 M_BUS_Int <= ("0000000" & Mem_Data_RD_Int(15 downto 0));
 S_BUSY_L_Int <= ACTIVE_L;
 M_RESUME_L_Int <= ACTIVE_L;
 Drive_Resume <= ACTIVE;

 when Read_Done_S =>
 M_RESUME_L_Int <= ACTIVE_L;
 Drive_Resume <= ACTIVE;
 S_BUSY_L_Int <= ACTIVE_L;

--States for Slave Write

 when Req_Write_S =>
 M_Addr_Latch <= ACTIVE;
 Drive_Resume <= ACTIVE;

 when AddClkIn_Write_S =>
 S_BUSY_L_Int <= ACTIVE_L;
 Drive_Resume <= ACTIVE;

163

 when Ack_Write_S =>
 Mem_Data_WR_Latch <= ACTIVE;
 Mem_Data_WR_Int <= ("0000000000000000" & M_BUS(15 downto 0));
 Mem_WR_Req <= ACTIVE;
 S_BUSY_L_Int <= ACTIVE_L;
 Drive_Resume <= ACTIVE;

 when Write_Data_S =>
 S_BUSY_L_Int <= ACTIVE_L;
 Drive_Resume <= ACTIVE;
 Mem_WR_Req <= ACTIVE;

 when Rsm_Write_S =>
 M_RESUME_L_Int <= ACTIVE_L;
 Drive_Resume <= ACTIVE;
 Mem_WR_Req <= INACTIVE;
 S_BUSY_L_Int <= ACTIVE_L;

 when Write_Done_S =>
 M_RESUME_L_Int <= ACTIVE_L;
 Drive_Resume <= ACTIVE;

--States for Errors
 when Error_Internal =>
 null;

 when Error_External =>
 Drive_Bus_Error <= ACTIVE;
 BUS_ERROR_L_Int <= ACTIVE_L;

 when others =>
 null;

 end case;

 end process outConProc;

end MBUS_Controller_arch;

164

===
 XBUS Arbitrator <x_grant_logic.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: XBUS Arbitrator
 Description: State Machine that determines the next user of the XBUS via a

rotating priority scheme and generates the control signals to notify
the current user. The signals monitored are the Desire signals from
6 external users plus the Processor. The control signals generated
are the Grant Signals.

-- Author: LT Bryan Fetter, USN
-- Advisor: Dr. Russ Duren
-- Co-advisor: Dr. Hersch Loomis
-- Location: Naval Postgraduate School

-- Created: 25 October 2002
-- Modified: 21 November 2002
-- Simulated:
-- Target: XCV1000E FG1156
-- Software: Foundation 4.2i
-- Notes:

Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.
===

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

package X_GRANT is

component X_GRANT_LOGIC
 port (
 X_Desire: in std_logic_vector (6 downto 0);
 X_Grant: out std_logic_vector (6 downto 0);
 X_Resume: inout STD_LOGIC;

165

 Clk: in STD_LOGIC;
 Rst: in STD_LOGIC
);
end component;

end package X_GRANT;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity X_GRANT_LOGIC is
 port (
 X_Desire: in std_logic_vector (6 downto 0);
 X_Grant: out std_logic_vector (6 downto 0);
 X_Resume: inout STD_LOGIC;
 Clk: in STD_LOGIC;
 Rst: in STD_LOGIC
);
end X_GRANT_LOGIC;

architecture X_GRANT_LOGIC_arch of X_GRANT_LOGIC is

type FSM_type is (Idle,Grant);
signal Curr_State, Next_State : FSM_Type;
signal Next_User : std_logic_vector (2 downto 0);
signal Pri_0,Pri_1,Pri_2,Pri_3,Pri_4,Pri_5,Pri_6 : std_logic_vector (2 downto 0);

signal X_Desire_Int : std_logic_vector (6 downto 0);
signal X_Grant_Int : std_logic_vector (6 downto 0);
signal X_Resume_Int: std_logic;

begin

X_Desire_Int <= X_Desire;
X_Resume_Int <= X_Resume;
X_Grant <= X_Grant_Int;

nxtStProc: process(Curr_State,Next_State,
 X_Desire_Int, X_Resume_Int,Next_User)

 begin

166

 case Curr_State is

 when Idle =>
 if X_Desire_Int /= "1111111" then
 Next_State <= Grant;
 else
 Next_State <= Idle;
 end if;

 when Grant =>

 if (X_Resume_Int = '1'
 and X_Desire_Int(conv_integer(Next_User)) = '1') then
 Next_State <= Idle;
 else
 Next_State <= Grant;
 end if;

 when others =>
 null;

 end case;
 end process nxtStProc;

--Process to register current state

 curStProc: process (Clk, Rst)
 begin
 if (Rst = '0') then
 Curr_State <= Idle;
 elsif (Clk'event and Clk ='1') then
 Curr_State <= Next_State;
 end if;
 end process curStProc;

--Process to generate outputs

 outConProc: process(Curr_State,X_Desire_Int,Pri_0,Pri_1,Pri_2,
 Pri_3,Pri_4,Pri_5,Pri_6,Next_User)

 begin

 case Curr_State is

 when Idle =>

167

 X_Grant_Int <= "0000000";

 --The 1st If statement is to handle the reset case

 if (Pri_0 = Pri_1) then
 if (X_Desire_Int(conv_integer(0)) = '0')then
 Next_User <= "000";
 elsif (X_Desire_Int(conv_integer(1)) = '0')then
 Next_User <= "001";
 elsif (X_Desire_Int(conv_integer(2)) = '0')then
 Next_User <= "010";
 elsif (X_Desire_Int(conv_integer(3)) = '0')then
 Next_User <= "011";
 elsif (X_Desire_Int(conv_integer(4)) = '0')then
 Next_User <= "100";
 elsif (X_Desire_Int(conv_integer(5)) = '0')then
 Next_User <= "101";
 elsif (X_Desire_Int(conv_integer(6)) = '0')then
 end if;

 elsif X_Desire_Int(conv_integer(Pri_0)) = '0'then
 Next_User <= Pri_0;
 elsif X_Desire_Int(conv_integer(Pri_1)) = '0'then
 Next_User <= Pri_1;
 elsif X_Desire_Int(conv_integer(Pri_2)) = '0'then
 Next_User <= Pri_2;
 elsif X_Desire_Int(conv_integer(Pri_3)) = '0'then
 Next_User <= Pri_3;
 elsif X_Desire_Int(conv_integer(Pri_4)) = '0'then
 Next_User <= Pri_4;
 elsif X_Desire_Int(conv_integer(Pri_5)) = '0'then
 Next_User <= Pri_5;
 elsif X_Desire_Int(conv_integer(Pri_6)) = '0'then
 Next_User <= Pri_6;
 end if;

 when Grant =>
 X_Grant_Int(conv_integer(Next_User)) <= '1';

 if Next_User = "000" then
 Pri_0 <= "001";
 Pri_1 <= "010";
 Pri_2 <= "011";
 Pri_3 <= "100";
 Pri_4 <= "101";

168

 Pri_5 <= "110";
 Pri_6 <= "000";
 elsif Next_User = "001" then
 Pri_0 <= "010";
 Pri_1 <= "011";
 Pri_2 <= "100";
 Pri_3 <= "101";
 Pri_4 <= "110";
 Pri_5 <= "000";
 Pri_6 <= "001";
 elsif Next_User = "010" then
 Pri_0 <= "011";
 Pri_1 <= "100";
 Pri_2 <= "101";
 Pri_3 <= "110";
 Pri_4 <= "000";
 Pri_5 <= "001";
 Pri_6 <= "010";
 elsif Next_User = "011" then
 Pri_0 <= "100";
 Pri_1 <= "101";
 Pri_2 <= "110";
 Pri_3 <= "000";
 Pri_4 <= "001";
 Pri_5 <= "010";
 Pri_6 <= "011";
 elsif Next_User = "100" then
 Pri_0 <= "101";
 Pri_1 <= "110";
 Pri_2 <= "000";
 Pri_3 <= "001";
 Pri_4 <= "010";
 Pri_5 <= "011";
 Pri_6 <= "100";
 elsif Next_User = "101" then
 Pri_0 <= "110";
 Pri_1 <= "000";
 Pri_2 <= "001";
 Pri_3 <= "010";
 Pri_4 <= "011";
 Pri_5 <= "100";
 Pri_6 <= "101";
 elsif Next_User = "110" then
 Pri_0 <= "000";
 Pri_1 <= "001";
 Pri_2 <= "010";

169

 Pri_3 <= "011";
 Pri_4 <= "100";
 Pri_5 <= "101";
 Pri_6 <= "110";
 else
 Pri_0 <= "001";
 Pri_1 <= "010";
 Pri_2 <= "011";
 Pri_3 <= "100";
 Pri_4 <= "101";
 Pri_5 <= "110";
 Pri_6 <= "000";
 end if;

 when others =>
 null;

 end case;

 end process outConProc;

end X_GRANT_LOGIC_arch;

170

===
 MBUS Desire / Grant Arbitrator <grant_logic.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: MBUS Grant Arbitrator

 Description: State machine that provides rotating priority logic to determinethe
next user of the MBUS. The component analyzes the MBUS Request signals from the 3
MBUS users and provides MBUS Grant signals to the appropriate user.The priority is a
rotating type that ensures that each user has equal access to the bus based upon the
previous user.

 Author: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 25 October 2002
 Modified: 7 November 2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Foundation 4.2i
 Notes:

 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use IEEE.std_logic_unsigned.all;
--use IEEE.std_logic_arith.all;

package Grant is

component Grant_Logic
 port (
 M_Desire_Ext: in UNSIGNED (1 downto 0);

171

 M_Desire_Proc: in STD_LOGIC;
 M_Grant_Ext: out UNSIGNED (1 downto 0);
 M_Grant_Proc: out STD_LOGIC;
 Clk: in STD_LOGIC;
 Rst: in STD_LOGIC
);
end component;

end package Grant;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use IEEE.std_logic_unsigned.all;
--use IEEE.std_logic_arith.all;

entity Grant_Logic is
 port (
 M_Desire_Ext: in UNSIGNED (1 downto 0);
 M_Desire_Proc: in STD_LOGIC;
 M_Grant_Ext: out UNSIGNED (1 downto 0);
 M_Grant_Proc: out STD_LOGIC;
 Clk: in STD_LOGIC;
 Rst: in STD_LOGIC
);
end Grant_Logic;

architecture Grant_Logic_arch of Grant_Logic is

type FSM_type is (Idle,Grant);
signal Curr_State, Next_State : FSM_Type;
signal User : UNSIGNED (1 downto 0);
signal Pri_0,Pri_1,Pri_2 : UNSIGNED (1 downto 0);

signal M_Desire_Int : UNSIGNED (2 downto 0);
signal M_Grant_Int : UNSIGNED (2 downto 0);

begin

M_Desire_Int(1) <= M_Desire_Ext(1);
M_Desire_Int(0) <= M_Desire_Ext(0);
M_Desire_Int(2) <= M_Desire_Proc;

M_Grant_Ext(1) <= M_Grant_Int(1);
M_Grant_Ext(0) <= M_Grant_Int(0);

172

M_Grant_Proc <= M_Grant_Int(2);

nxtStProc: process(Curr_State,Next_State, M_Desire_Int, User)

 begin

 case Curr_State is

 when Idle =>

 if M_Desire_Int /= "111" then
 Next_State <= Grant;
 else
 Next_State <= Idle;
 end if;

 when Grant =>
 if (M_Desire_Int(to_integer(User)) = '0') then
 Next_State <= Grant;
 else
 Next_State <= Idle;
 end if;

 when others =>
 null;

 end case;
 end process nxtStProc;

--Process to register current state

 curStProc: process (Clk, Rst)
 begin
 if (Rst = '0') then
 Curr_State <= Idle;
 elsif (Clk'event and Clk ='1') then
 Curr_State <= Next_State;
 end if;
 end process curStProc;

--Process to generate outputs

 outConProc: process(Curr_State,M_Desire_Int,Pri_0,Pri_1,Pri_2,User)

173

 begin

 case Curr_State is

 when Idle =>
 M_Grant_Int <= "000";

 --to handle Reset
 if (Pri_0 = Pri_1) then
 if ((M_Desire_Int(0)) = '0')then
 User <= "00";
 elsif ((M_Desire_Int(1)) = '0')then
 User <= "01";
 elsif ((M_Desire_Int(2)) = '0')then
 User <= "10";
 end if;
 elsif (M_Desire_Int(to_integer(Pri_0)) = '0')then
 User <= Pri_0;
 elsif (M_Desire_Int(to_integer(Pri_1)) = '0')then
 User <= Pri_1;
 elsif (M_Desire_Int(to_integer(Pri_2)) = '0')then
 User <= Pri_2;
 end if;

 when Grant =>
 M_Grant_Int(to_integer(User)) <= '1';

 if User = "00" then
 Pri_0 <= "01";
 Pri_1 <= "10";
 Pri_2 <= "00";
 elsif User = "01" then
 Pri_0 <= "10";
 Pri_1 <= "00";
 Pri_2 <= "01";
 elsif User = "10" then
 Pri_0 <= "00";
 Pri_1 <= "01";
 Pri_2 <= "10";
 else
 Pri_0 <= "00";
 Pri_1 <= "01";
 Pri_2 <= "10";
 end if;

174

 when others =>
 null;

 end case;

 end process outConProc;

end Grant_Logic_arch;

175

===
 XBUS Controller <xbus_controller.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: XBUS Controller
 Description: State Machine that determines the user of the XBUS via use of the

X_GRANT_LOGIC program and generates the control signals for
XBUS operation depending upon type of operation and user. For
I/O module (DSM) memory requests, generates the 23-bit address
from Page Register set 0 and generates control signals for
memory interface.

 Author: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 25 October 2002
 Modified: 21 November 2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Foundation 4.2i
 Notes:

 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use WORK.X_GRANT.all;
use WORK.common.all;

package XBUS_CTRL is

component XBUS_Controller
 generic(
 FREQ: natural := 40_000-- operating frequency in KHz
);
 port (

176

 Clk: in std_logic;
 Rst: in std_logic;
 -- Signals from Processor
 P_Command: in unsigned(23 downto 0); --Command Word for X_BUS
 P_Data_In: in unsigned(15 downto 0); --Data Word for X_BUS
 P_Data_Out: out unsigned(15 downto 0);--Data read by XBUS
 --P_Page_0: --Page Register set 0
 P_Desire_L: in std_logic; --Desire Signal
 P_GRANT: out STD_LOGIC; --Grant Signal

 -- Signals from Memory Arbitrator
 Mem_Addr: out unsigned(22 downto 0);
 Mem_Data_WR: out unsigned(31 downto 0);
 Mem_Data_RD: in unsigned(31 downto 0);
 Mem_WR_Req: out std_logic;
 Mem_RD_Req: out std_logic;
 Mem_Done: in std_logic;
 --Test Port
 --Timer_Port: out unsigned(1 downto 0);
 -- Signals on/off Adapter
 X_BUS: inout unsigned(23 downto 0);
 X_GRANT_OUT: out std_logic_vector(5 downto 0);
 X_DESIRE_IN_L: in std_logic_vector(5 downto 0);
 X_REQUEST_L: inout std_logic;
 X_ACKNOWLEDGE_L:inout std_logic;
 X_RESUME_L: inout std_logic;
 IPC_MODE_L: inout std_logic

);
end component;

end XBUS_Ctrl;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use WORK.X_GRANT.all;
use WORK.Common.all;

entity XBUS_Controller is
 generic(
 FREQ: natural := 40_000-- operating frequency in KHz
);
 port (
 Clk: in std_logic;

177

 Rst: in std_logic;
 -- Signals from Processor
 P_Command: in unsigned(23 downto 0); --Command Word for X_BUS
 P_Data_In: in unsigned(15 downto 0); --Data Word for X_BUS
 P_Data_Out: out unsigned(15 downto 0);--Data read by XBUS
 --P_Page_0: --Page Register set 0
 P_Desire_L: in std_logic; --Desire Signal
 P_GRANT: out STD_LOGIC; --Grant Signal

 -- Signals from Memory Arbitrator
 Mem_Addr: out unsigned(22 downto 0);
 Mem_Data_WR: out unsigned(31 downto 0);
 Mem_Data_RD: in unsigned(31 downto 0);
 Mem_WR_Req: out std_logic;
 Mem_RD_Req: out std_logic;
 Mem_Done: in std_logic;
 --Test Port
 --Timer_Port: out unsigned(1 downto 0);
 -- Signals on/off Adapter
 X_BUS: inout unsigned(23 downto 0);
 X_GRANT_OUT: out std_logic_vector(5 downto 0);
 X_DESIRE_IN_L: in std_logic_vector(5 downto 0);
 X_REQUEST_L: inout std_logic;
 X_ACKNOWLEDGE_L:inout std_logic;
 X_RESUME_L: inout std_logic;
 IPC_MODE_L: inout std_logic
);
end XBUS_Controller;

architecture XBUS_Controller_arch of XBUS_Controller is

--constants

constant DELAY_TWO_ZERO: natural := 20; -- 20 ns Delay interval
constant DELAY_FIVE_ZERO: natural := 50; -- 50 ns Delay interval
-- ACK Signal Max Delay (20ns)
constant TIMER_CYCLES_TWO_ZERO: natural := 1 + ((DELAY_TWO_ZERO *
FREQ) / 1000000);
-- Delay (50 ns)
constant TIMER_CYCLES_FIVE_ZERO:natural := 1 + ((DELAY_FIVE_ZERO *
FREQ) / 1000000);
constant MSTR_ADDR: unsigned(3 downto 0) := "0000";
--Address of VPM on XBUS
--Constants for Clarity of Code
constant ACTIVE: std_logic := '1';
constant ACTIVE_L: std_logic := '0'; --For active low signal

178

constant INACTIVE: std_logic := '0';
constant INACTIVE_L: std_logic := '1'; --For active low signal

signal Timer, Timer_next: unsigned(log2(TIMER_CYCLES_FIVE_ZERO+1)-1 downto
0);
-- current Delay time
signal Time_Out: std_logic;
signal User: natural;

--All signals tied to input/output have same name with _int addended

signal Clk_Int : std_logic;
signal Rst_Int : std_logic;

signal X_GRANT_OUT_Int: std_logic_vector(6 downto 0);
signal X_DESIRE_IN_L_Int: std_logic_vector(6 downto 0);
signal X_BUS_Int: unsigned(23 downto 0);
signal X_REQUEST_L_Int: std_logic;
signal X_ACKNOWLEDGE_L_Int:std_logic;
signal X_RESUME_L_Int: std_logic;
signal IPC_MODE_L_Int: std_logic;

--Signal to drive INOUTS
signal Drive_X_BUS: std_logic;
signal Drive_X_REQUEST: std_logic;
signal Drive_X_ACKNOWLEDGE: std_logic;
signal Drive_X_RESUME: std_logic;
signal Drive_IPC_MODE: std_logic;

--Signals to Latch
signal P_Command_Int: unsigned(23 downto 0);
--Command Word for X_BUS
signal P_Data_In_Int: unsigned(15 downto 0); --Data Word for X_BUS
signal P_Data_Out_Int: unsigned(15 downto 0); --Data Word for X_BUS
signal Mem_Data_WR_Int: unsigned(31 downto 0);
signal Mem_Data_RD_Int: unsigned(31 downto 0);
signal Mem_Done_Int: std_logic;
signal Mem_Addr_Int: unsigned(22 downto 0);

--Latch Driver Signals
signal P_Command_Latch: std_logic; --Command Word for X_BUS
signal P_Data_In_Latch: std_logic; --Data Word for X_BUS
signal P_Data_Out_Latch: std_logic; --Data Word for X_BUS
signal Mem_Data_WR_Latch: std_logic;

179

signal Mem_Data_RD_Latch: std_logic;
signal Mem_Done_Latch: std_logic;
signal Mem_Addr_Latch: std_logic;

type FSM_type is (Idle,Proc_Bdcst,Req_Proc_Write,Ack_Proc_Write,Rsm_Proc_Write,

Req_Proc_Read,Ack_Proc_Read,Read_Wait,Rsm_Proc_Read,
DSM_Bdcst, Req_DSM_Write, Addr_ClkIn_DSM_WR, Ack_DSM_Write,
Data_ClkIn_DSM_WR,Req_DSM_Read,Addr_ClkIn_DSM_RD,
Data_ClkOut_DSM_RD, Ack_DSM_Read);

 --Proc_Bdcst Processor Broadcast Operation
 --Req_Proc_Write Request Phase of Processor Write Operation
 --Ack_Proc_Write Acknowledge Phase of Processor Write Operation
 --Write_Wait Wait for resume signal to indicate memory written
 --Rsm_Proc_Write Resume Phase of Processor Write Operation
 --Req_Proc_Read Request Phase of Processor Read Operation
 --Ack_Proc_Read Acknowledge Phase of Processor Read Operation
 --Rsm_Proc_Read Resume Phase of Processor Read Operation
 --DSM_Bdcst DSM Broadcast Operation
 --Req_DSM_Write Request Phase of DSM Write Operation
 --Ack_DSM_Write Acknowledge Phase of DSM Write Operation
 --Req_DSM_Read Request Phase of DSM Read Operation
 --Ack_DSM_Read Acknowledge Phase of DSM Read Operation

signal Curr_State, Next_State : FSM_Type;

begin

--Test Signal
--Test Port
--Timer_Port <= Timer;

--Connect all appropriate signals
Clk_Int <= Clk;
Rst_Int <= Rst;

X_DESIRE_IN_L_Int <= X_DESIRE_IN_L & P_Desire_L;
X_GRANT_OUT <= X_GRANT_OUT_Int(5 downto 0);
P_GRANT <= X_GRANT_OUT_Int(6);
Mem_Addr <= Mem_Addr_Int;
--X_RESUME_L_Int <= X_RESUME_L;
P_Data_Out <= P_Data_Out_Int;
Mem_Data_WR <= Mem_Data_WR_Int;

180

--Tristates for INOUTs

X_BUS <= X_BUS_Int when Drive_X_BUS = ACTIVE else (others =>'Z');
X_REQUEST_L <= X_REQUEST_L_Int when Drive_X_REQUEST = ACTIVE else
('Z');
X_ACKNOWLEDGE_L <= X_ACKNOWLEDGE_L_Int when
Drive_X_ACKNOWLEDGE = ACTIVE else ('Z');
X_RESUME_L <= X_RESUME_L_Int when Drive_X_RESUME = ACTIVE else ('Z');
IPC_MODE_L <= IPC_MODE_L_Int when Drive_IPC_MODE = ACTIVE else
('Z');

--Latch Signals
P_Command_Int <= P_Command when P_Command_Latch = ACTIVE else
P_Command_Int;
P_Data_In_Int <= P_Data_In when P_Data_In_Latch = ACTIVE else P_Data_In_Int;
P_Data_Out_Int <= X_BUS(15 downto 0) when P_Data_Out_Latch = ACTIVE else
P_Data_Out_Int;
Mem_Addr_Int <= X_BUS(22 downto 0) when Mem_Addr_Latch = ACTIVE else
Mem_Addr_Int;
Mem_Data_WR_Int <= ("0000000000000000" & X_BUS(15 downto 0))
 when Mem_Data_WR_Latch = ACTIVE else Mem_Data_WR_Int;
Mem_Data_RD_Int <= (Mem_Data_RD) when Mem_Data_RD_Latch = ACTIVE else
Mem_Data_RD_Int;
Mem_Done_Int <= Mem_Done when Mem_Done_Latch = ACTIVE else
Mem_Done_Int;

--Instantiate Grant Logic Module
 u0: X_GRANT_LOGIC port map (
 X_Desire => X_DESIRE_IN_L_Int,
 X_Grant => X_GRANT_OUT_Int,
 X_Resume =>X_RESUME_L_Int,
 Clk => Clk_Int,
 Rst => Rst_Int
);

--Next State Conditioning Logic (Process 1)

nxtStProc:
process(Curr_State,Mem_Done,Timer,User,X_DESIRE_IN_L,X_RESUME_L,

X_ACKNOWLEDGE_L,X_REQUEST_L,P_Command,
X_BUS,X_GRANT_OUT_Int, Mem_Done_Int)

 begin

181

 case Curr_State is

 when Idle =>
 if (X_GRANT_OUT_Int(6) = ACTIVE) then --Processor Operations
 if (P_Command(19) = ACTIVE) then
 next_state <= Proc_Bdcst;
 elsif (P_Command(17) = ACTIVE) then
 next_state <= Req_Proc_Write;
 else
 next_state <= Req_Proc_Read;
 end if;
 elsif (X_GRANT_OUT_Int(5 downto 0) /= "000000") then --DSM Operations
 if (X_REQUEST_L = ACTIVE_L) then
 if (X_BUS(19) = ACTIVE) then
 next_state <= DSM_Bdcst;
 elsif (X_BUS(19) = INACTIVE
 and X_BUS(23 downto 20) = MSTR_ADDR) then
 if (X_BUS(17) = INACTIVE) then
 next_state <= REQ_DSM_Read;
 elsif (X_BUS(17) = ACTIVE) then
 next_state <= REQ_DSM_Write;
 end if;
 end if;
 end if;
 else
 next_state <= Idle;
 end if;
 --Determine User
 if X_GRANT_OUT_Int(0) = ACTIVE then
 User <= 0;
 elsif X_GRANT_OUT_Int(1) = ACTIVE then
 User <= 1;
 elsif X_GRANT_OUT_Int(2) = ACTIVE then
 User <= 2;
 elsif X_GRANT_OUT_Int(3) = ACTIVE then
 User <= 3;
 elsif X_GRANT_OUT_Int(4) = ACTIVE then
 User <= 4;
 elsif X_GRANT_OUT_Int(5) = ACTIVE then
 User <= 5;
 else
 User <= 0;
 end if;
 --Broadcast Command by Processor
 when Proc_Bdcst =>
 if X_GRANT_OUT_Int(6) = INACTIVE then

182

 next_state <= Idle;
 else
 next_state <= Proc_Bdcst;
 end if;
 --Processor Write Operations
 when Req_Proc_Write =>
 if X_ACKNOWLEDGE_L = INACTIVE_L then
 next_state <= Ack_Proc_Write;
 else
 next_state <= Req_Proc_Write;
 end if;

 when Ack_Proc_Write =>
 if X_RESUME_L = ACTIVE_L then
 next_state <= Rsm_Proc_Write;
 else
 next_state <= Ack_Proc_Write;
 end if;

 when Rsm_Proc_Write =>
 if X_RESUME_L = INACTIVE_L then
 next_state <= Idle;
 else
 next_state <= Rsm_Proc_Write;
 end if;
 --Processor Read Operation

 when Req_Proc_Read =>
 if X_ACKNOWLEDGE_L = ACTIVE_L then
 next_state <= Ack_Proc_Read;
 else
 next_state <= Req_Proc_Read;
 end if;

 when Ack_Proc_Read =>
 if X_RESUME_L = ACTIVE_L then
 next_state <= Read_Wait;
 else
 next_state <= Ack_Proc_Read;
 end if;

 when Read_Wait =>
 next_state <= Rsm_Proc_Read;

 when Rsm_Proc_Read=>
 if X_RESUME_L = INACTIVE_L then

183

 next_state <= Idle;
 else
 next_state <= Rsm_Proc_Read;
 end if;

 when DSM_Bdcst =>
 if (X_DESIRE_IN_L(User) = INACTIVE_L) then
 next_state <= Idle;
 else
 next_state <= DSM_Bdcst;
 end if;
 --DSM Write to Memory
 when Req_DSM_Write =>
 next_state <= Addr_ClkIn_DSM_WR;

 when Addr_ClkIn_DSM_WR =>
 if Timer = 0 then
 next_state <= Ack_DSM_Write;
 else
 next_state <= Addr_ClkIn_DSM_WR;
 end if;

 when Ack_DSM_Write =>
 next_state <= Data_ClkIn_DSM_WR;

 when Data_ClkIn_DSM_WR =>
 if (Mem_Done_Int = ACTIVE
 and X_DESIRE_IN_L(User) = INACTIVE_L) then
 next_state <= Idle;
 else
 next_state <= Data_ClkIn_DSM_WR;
 end if;
 --DSM Read from Memory
 when Req_DSM_Read =>
 next_state <= Addr_ClkIn_DSM_RD;

 when Addr_ClkIn_DSM_RD =>
 if Mem_Done = ACTIVE then
 next_state <= Data_ClkOut_DSM_RD;
 else
 next_state <= Addr_ClkIn_DSM_RD;
 end if;

 when Data_ClkOut_DSM_RD =>
 next_state <= Ack_DSM_Read;

184

 when Ack_DSM_Read =>
 if Timer = 0 then
 next_state <= Idle;
 else
 next_state <= Ack_DSM_Read;
 end if;

 when others =>
 null;

 end case;

--Timer Logic
 case Curr_State is

 when Idle =>
 null;

 when others =>

 if Timer /= TO_UNSIGNED(0,Timer'length) then
 Timer_next <= Timer - 1;
 Time_Out <= INACTIVE;
 else
 --Timer_next <= Timer;
 Time_Out <= ACTIVE;
 end if;
 end case;

 end process nxtStProc;

--Current State Vector Register (Process 2)

 curStProc: process (Clk_Int, Rst_Int)
 begin
 if (Rst_Int = '0') then
 Curr_State <= Idle;
 Timer <= TO_UNSIGNED(0,Timer'length);
 elsif (Clk_Int'event and Clk_Int ='1') then
 Curr_State <= Next_State;
 Timer <= Timer_next;
 end if;
 end process curStProc;

--Output Conditioning Logic (Process 3)

185

 outConProc: process(Curr_State,P_Command_Int,P_Data_In_Int,
 Mem_Data_RD_Int)

 begin

 --Default Signal to drive all Tristates High Z

 Drive_X_BUS <= INACTIVE;
 X_REQUEST_L_Int <= INACTIVE_L;
 Drive_X_REQUEST <= INACTIVE;
 X_ACKNOWLEDGE_L_Int <= INACTIVE_L;
 Drive_X_ACKNOWLEDGE <= INACTIVE;
 X_RESUME_L_Int <= INACTIVE_L;
 Drive_X_RESUME <= INACTIVE;
 IPC_MODE_L_Int <= INACTIVE_L;
 Drive_IPC_MODE <= INACTIVE;

 --Drive all outs inactive
 Mem_WR_Req <= INACTIVE;
 Mem_RD_Req <= INACTIVE;

 --Latch Drivers
 P_Command_Latch <= INACTIVE; --Command Word for X_BUS
 P_Data_In_Latch <= INACTIVE; --Data Word for X_BUS
 P_Data_Out_Latch <= INACTIVE;
 Mem_Data_WR_Latch<= INACTIVE;
 Mem_Data_RD_Latch<= INACTIVE;
 Mem_Done_Latch <= INACTIVE;
 Mem_Addr_Latch <= INACTIVE;

 case Curr_State is

 when Idle =>
 P_Command_Latch <= ACTIVE;
 --This latches the signal when leaving Idle
 P_Data_In_Latch <= ACTIVE;

 when Proc_Bdcst =>
 P_Command_Latch <= ACTIVE;
 Drive_X_BUS <= ACTIVE;
 X_BUS_Int <= P_Command_Int;
 X_REQUEST_L_Int <= ACTIVE_L;
 Drive_X_REQUEST <= ACTIVE;

 when Req_Proc_Write =>
 Drive_X_BUS <= ACTIVE;

186

 X_BUS_Int <= P_Command_Int;
 X_REQUEST_L_Int <= ACTIVE_L;
 Drive_X_REQUEST <= ACTIVE;

 when Ack_Proc_Write =>
 Drive_X_BUS <= ACTIVE;
 X_BUS_Int(15 downto 0) <= P_Data_In_Int;
 Drive_X_REQUEST <= ACTIVE;

 when Rsm_Proc_Write =>
 Drive_X_REQUEST <= ACTIVE;

--Processor Read Operation

 when Req_Proc_Read =>
 Drive_X_BUS <= ACTIVE;
 X_BUS_Int <= P_Command_Int;
 X_REQUEST_L_Int <= ACTIVE_L;
 Drive_X_REQUEST <= ACTIVE;

 when Ack_Proc_Read =>
 Drive_X_REQUEST <= ACTIVE;

 when Read_Wait =>
 P_Data_Out_Latch <= ACTIVE;
 Drive_X_REQUEST <= ACTIVE;

 when Rsm_Proc_Read=>
 Drive_X_REQUEST <= ACTIVE;

--DSM Operations
 when DSM_Bdcst =>
 --No response Required

--DSM Write Operation
 when Req_DSM_Write =>
 Mem_Addr_Latch <= ACTIVE;
 Drive_X_RESUME <= ACTIVE;
 Drive_X_ACKNOWLEDGE <= ACTIVE;

 when Addr_ClkIn_DSM_WR =>
 X_ACKNOWLEDGE_L_Int <= ACTIVE_L;
 Drive_X_ACKNOWLEDGE <= ACTIVE;
 Drive_X_RESUME <= ACTIVE;

 when Ack_DSM_Write =>

187

 Mem_Data_WR_Latch <= ACTIVE;
 Drive_X_RESUME <= ACTIVE;
 Drive_X_ACKNOWLEDGE <= ACTIVE;

 when Data_ClkIn_DSM_WR =>
 X_RESUME_L_Int <= ACTIVE_L;
 Drive_X_RESUME <= ACTIVE;
 Drive_X_ACKNOWLEDGE <= ACTIVE;
 Mem_WR_Req <= ACTIVE;

--DSM Read Operation
 when Req_DSM_Read =>
 Mem_Addr_Latch <= ACTIVE;
 Drive_X_RESUME <= ACTIVE;
 Drive_X_ACKNOWLEDGE <= ACTIVE;

 when Addr_ClkIn_DSM_RD =>
 X_ACKNOWLEDGE_L_Int <= ACTIVE_L;
 Drive_X_ACKNOWLEDGE <= ACTIVE;
 Drive_X_RESUME <= ACTIVE;
 Mem_RD_Req <= ACTIVE;
 Mem_Data_RD_Latch <= ACTIVE;

 when Data_ClkOut_DSM_RD =>
 Drive_X_BUS <= ACTIVE;
 X_BUS_Int(15 downto 0) <= Mem_Data_RD_Int(15 downto 0);
 Drive_X_RESUME <= ACTIVE;
 Drive_X_ACKNOWLEDGE <= ACTIVE;

 when Ack_DSM_Read =>
 Drive_X_BUS <= ACTIVE;
 X_BUS_Int(15 downto 0) <= Mem_Data_RD_Int(15 downto 0);
 X_RESUME_L_Int <= ACTIVE_L;
 Drive_X_RESUME <= ACTIVE;
 X_ACKNOWLEDGE_L_Int <= INACTIVE_L;
 Drive_X_ACKNOWLEDGE <= ACTIVE;

 when others =>
 null;

 end case;

 end process outConProc;

end XBUS_Controller_arch;

188

===
 Adapter Module <adapter_top.vhd>
===

 Project: AYK-14 VHSIC Processor Module Hardware Emulator
 Component: Adapter (Top level module)
 Description: Adapter module combines all of the components in the project,

including the processor (data_path.vhd), and connects all
appropriate signals. The ports correspond to the ports on the VPM
and the SDRAM available on the AVNET board.

 Author: LT Bryan Fetter, USN
 Advisor: Dr. Russ Duren
 Co-advisor: Dr. Hersch Loomis
 Location: Naval Postgraduate School

 Created: 25 October 2002
 Modified: 1 December2002
 Simulated:
 Target: XCV1000E FG1156
 Software: Foundation 4.2i

 Disclaimer: NPS, makes no warranty for the use of this code or design. This code is
provided "As Is". NPS, assumes no responsibility for any errors, which may appear in
this code, nor does it make a commitment to update the information contained herein.
NPS specifically disclaims any implied warranties of fitness for a particular purpose.
 Copyright (c) 2002 NPS
 All rights reserved.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use WORK.common.all;
use WORK.Event_Bus.all;
use WORK.Add_Sel.all;
use WORK.Mem_Arb.all;
use WORK.Grant.all;
use WORK.oddParity.all;
use WORK.MBUS_CTRL.all;
use WORK.X_Grant.all;
use WORK.XBUS_CTRL.all;
use WORK.sdram.all;

189

entity Adapter_Top is
 generic(
 SD_FREQ: natural := 40_000;-- operating frequency in KHz
 SD_DATA_WIDTH: natural := 16;-- host & SDRAM data width
 SD_SADDR_WIDTH: natural := 12;-- SDRAM-side address width
 SD_HADDR_WIDTH: natural := 23;
 DATA_WIDTH_Arb: natural := 32;
 ADDR_WIDTH_Arb: natural := 23;
 XFREQ: natural := 40_000
);
 port (
 CLK: in std_logic;
 RST: in std_logic;
 --MBUS Signals
 M_BUS: inout unsigned(22 downto 0);
 --Handshaking Signals
 M_REQUEST_L: inout STD_LOGIC;
 M_ACKNOWLEDGE_L: inout STD_LOGIC;
 M_RESUME_L: inout STD_LOGIC;
 --Arbitration / Control Signals
 --M_DESIRE_OUT_L: out STD_LOGIC;
 M_DESIRE_IN_L: in unsigned(1 downto 0);
 M_GRANT_OUT: out unsigned(1 downto 0);
 --M_GRANT_IN: in STD_LOGIC; --Used when VPM is slave
 M_BUSY_L: inout STD_LOGIC;
 S_BUSY_L: out STD_LOGIC;
 --MBus parity bits
 LSB_PARITY: inout STD_LOGIC;
 MSB_PARITY: inout STD_LOGIC;
 ADRS_PARITY: inout STD_LOGIC;
 CMD_PARITY: inout STD_LOGIC;
 --Control Bits
 MSB_WRITE_L: inout STD_LOGIC;
 LSB_WRITE_L: inout STD_LOGIC;
 BUS_ERROR_L: inout STD_LOGIC;
 THREE_TWO_DATA: inout STD_LOGIC;
 IPL_WRITE: inout STD_LOGIC;

 --XBUS Signals
 X_BUS: inout unsigned(23 downto 0);
 --Handshaking Signals
 X_REQUEST_L: inout STD_LOGIC;
 X_ACKNOWLEDGE_L: inout STD_LOGIC;
 X_RESUME_L: inout STD_LOGIC;
 --X_DESIRE_OUT_L: out STD_LOGIC;
 --Arbitration Signals

190

 X_GRANT_OUT: out std_logic_vector(5 downto 0);
 X_DESIRE_IN: in std_logic_vector(5 downto 0);
 --X_GRANT_IN: in STD_LOGIC;
 --O_X_GRANT_IN: in STD_LOGIC;
 --IPC Control
 IPC_MODE: inout STD_LOGIC;

 --Event System Signals
 E_BUS: in STD_LOGIC_VECTOR (7 downto 0);
 --Event Control Signals (EMON Bus)
 EMON: out STD_LOGIC_VECTOR (7 downto 0);

 --SDRAM Signals
 sclkfb: in std_logic;
 sclk: out std_logic;
 sclk_tst: out std_logic;
 cke: out std_logic;
 cs_n: out std_logic;
 ras_n: out std_logic;
 cas_n: out std_logic;
 we_n: out std_logic;
 ba: out unsigned(1 downto 0);
 sAddr: out unsigned(SD_SADDR_WIDTH-1 downto 0);
 sData: inout unsigned(SD_DATA_WIDTH-1 downto 0);
 dqmh: out std_logic;
 dqml: out std_logic

);
end Adapter_Top;

architecture Adapter_Top_arch of Adapter_Top is

signal Clk_Int: std_logic;
signal Rst_Int: std_logic;
--Signals for Event Controller
signal E_VCTR_Int: std_logic_vector(8 downto 0);
signal SR1_Bit_Int: std_logic;
--Signals for Add_Select
signal Add_In_Proc_Int: unsigned (22 downto 0);
signal Data_WR_Proc_Int: unsigned (31 downto 0);
signal Data_RD_Proc_Int: unsigned (31 downto 0);
signal RD_Req_in_Proc_Int: STD_LOGIC;
signal WR_Req_in_Proc_Int: STD_LOGIC;
signal Mem_req_Done_Proc_Int: std_logic;
 --MBUS Side
signal Data_RD_MBUS_Int: unsigned (31 downto 0);

191

signal Data_WR_MBUS_Int: unsigned (31 downto 0);
signal Add_out_MBUS_Int: unsigned (22 downto 0);
signal RD_Req_out_MBUS_Int: STD_LOGIC;
signal WR_Req_out_MBUS_Int: STD_LOGIC;
signal Proc_Desire_L_MBUS_Int: STD_LOGIC;
signal Mem_req_Done_MBUS_Int: STD_LOGIC;
 --OBM Side
signal Add_In_OBM_Int: unsigned (22 downto 0);
signal Data_RD_OBM_Int: unsigned (31 downto 0);
signal Data_WR_OBM_Int: unsigned (31 downto 0);
signal RD_Req_OBM_Int: STD_LOGIC;
signal WR_Req_OBM_Int: STD_LOGIC;
signal Mem_req_Done_OBM_Int: STD_LOGIC;
--Data Path
signal IR_BUS_int_Int: std_logic_vector (31 downto 0);
signal abs_addr_1_Int: std_logic_vector (22 downto 0);
signal lcen_Int: std_logic;
signal rcen_Int: std_logic;
signal mem_READ_req_l_Int: std_logic;
signal mem_WRITE_req_l_Int: std_logic;
--MBUS
signal P_Grant_Out_Int: std_logic;
signal M_Mem_Addr_Int: unsigned(22 downto 0);
signal M_Mem_Data_WR_Int: unsigned(31 downto 0);
signal M_Mem_Data_RD_Int: unsigned(31 downto 0);
signal M_Mem_WR_Req_Int: std_logic;
signal M_Mem_RD_Req_Int: std_logic;
signal M_Mem_Done_Int: std_logic;
--XBUS
signal P_Command_Int: unsigned(23 downto 0);
signal P_Data_In_Int: unsigned(15 downto 0);
signal P_Data_Out_Int: unsigned(15 downto 0);
signal P_Desire_L_Int: std_logic;
signal P_GRANT_Int: std_logic;
signal X_Mem_Addr_Int: unsigned(22 downto 0);
signal X_Mem_Data_WR_Int: unsigned(31 downto 0);
signal X_Mem_Data_RD_Int: unsigned(31 downto 0);
signal X_Mem_WR_Req_Int: std_logic;
signal X_Mem_RD_Req_Int: std_logic;
signal X_Mem_Done_Int: std_logic;
--SDRAM Ctrl
signal SD_bufclk_Int: std_logic;
signal SD_clk2x_Int:std_logic;
signal SD_lock_Int: std_logic;
signal SD_rd_Int: std_logic;
signal SD_wr_Int: std_logic;

192

signal SD_done_Int: std_logic;
signal SD_hAddr_Int: unsigned(SD_HADDR_WIDTH-1 downto 0);
signal SD_hDIn_Int: unsigned(SD_DATA_WIDTH-1 downto 0);
signal SD_hDOut_Int: unsigned(SD_DATA_WIDTH-1 downto 0);
signal SD_sdramCntl_state_Int: std_logic_vector(3 downto 0);

begin

--Clk_Int <= CLK;
Rst_Int <= RST;

 EBUS1: EVT_FSM port map(
 EBUS => E_BUS,
 CLK => Clk_Int,
 RST => Rst_Int,
 SR1_BIT => SR1_Bit_Int, --Needs to be updated
 EMON => EMON,
 E_VCTR => E_VCTR_Int
);

 ADD_SEL1: Add_Select port map(
 Add_In_Proc => Add_In_Proc_Int,
 Data_WR_Proc => Data_WR_Proc_Int,
 Data_RD_Proc => Data_RD_Proc_Int,
 RD_Req_in_Proc => RD_Req_in_Proc_Int,
 WR_Req_in_Proc => WR_Req_in_Proc_Int,
 Mem_req_Done_Proc => Mem_req_Done_Proc_Int,
 --MBUS Side
 Data_RD_MBUS => Data_RD_MBUS_Int,
 Data_WR_MBUS => Data_WR_MBUS_Int,
 Add_out_MBUS => Add_out_MBUS_Int,
 RD_Req_out_MBUS => RD_Req_out_MBUS_Int,
 WR_Req_out_MBUS => WR_Req_out_MBUS_Int,
 Proc_Desire_L_MBUS => Proc_Desire_L_MBUS_Int,
 Mem_req_Done_MBUS => Mem_req_Done_MBUS_Int,
 --OBM Side
 Add_In_OBM => Add_In_OBM_Int,
 Data_RD_OBM => Data_RD_OBM_Int,
 Data_WR_OBM => Data_WR_OBM_Int,
 RD_Req_OBM => RD_Req_OBM_Int,
 WR_Req_OBM => WR_Req_OBM_Int,
 Mem_req_Done_OBM => Mem_req_Done_OBM_Int
);

193

 Mem_Arb1: mem_arbitrator generic map(
 DATA_WIDTH => DATA_WIDTH_Arb,
 ADDR_WiDTH => ADDR_WIDTH_Arb)
 port map(
 Clk => Clk_Int,
 RST => Rst_Int,
 --Signals from SDRAM Controller
 Mem_Done => SD_done_Int,
 RD => SD_rd_Int,
 WR => SD_wr_Int,
 hAddr => SD_hAddr_Int,
 hData_In => SD_hDIn_Int,
 hData_Out =>SD_hDOut_Int,
 --Signals from Processor
 P_Addr_In => Add_In_OBM_Int,
 P_Data_In => Data_RD_OBM_Int,
 P_Data_Out => Data_WR_OBM_Int,
 P_Mem_Done => Mem_req_Done_OBM_Int,
 P_RD => RD_Req_OBM_Int,
 P_WR => WR_Req_OBM_Int,
 --Signals from MBus
 M_Addr_In => M_Mem_Addr_Int,
 M_Data_In => M_Mem_Data_RD_Int,
 M_Data_Out => M_Mem_Data_WR_Int,
 M_Mem_Done => M_Mem_Done_Int,
 M_RD => M_Mem_RD_Req_Int,
 M_WR => M_Mem_WR_Req_Int,

 --Signals from XBus
 X_Addr_In => X_Mem_Addr_Int,
 X_Data_In => X_Mem_Data_WR_Int,
 X_Data_Out => X_Mem_Data_RD_Int,
 X_Mem_Done => X_Mem_Done_Int,
 X_RD => X_Mem_RD_Req_Int,
 X_WR => X_Mem_WR_Req_Int
);

 Processor:data_path port map(
 reset => Rst_Int,
 clock => Clk_Int,
 mem_req_DONE => Mem_req_Done_Proc_Int,
 mem_READ_req => RD_Req_in_Proc_Int,
 mem_WRITE_req => WR_Req_in_Proc_Int,
 IR_BUS => IR_BUS_Int,
 mem_BUS => Data_RD_Proc_Int,

194

 abs_addr => Add_In_Proc_Int,
 abs_addr_1 => abs_addr_1_Int,
 lcen => lcen_Int,
 rcen => lcen_Int,
 mem_READ_req_l => mem_READ_req_l_Int,
 mem_WRITE_req_l => mem_WRITE_req_l
);

 MBUS: mbus_controller port map(
 Clk => Clk_Int,
 Rst => Rst_Int,
 -- Signals from Processor
 P_Data_WR => Data_WR_MBUS_Int,
 P_Data_RD => Data_RD_MBUS_Int,
 P_Addr => Add_out_MBUS_Int,
 P_RD_Req => RD_Req_out_MBUS_Int,
 P_WR_Req => WR_Req_out_MBUS_Int,
 P_Desire_L => Proc_Desire_L_MBUS_Int,
 P_Mem_Done =>Mem_req_Done_MBUS_Int,
 P_Grant_Out => P_Grant_Out_Int, --Grant signal to Processor

 -- Signals from Memory Arbitrator
 Mem_Addr => M_Mem_Addr_Int,
 Mem_Data_WR => M_Mem_Data_WR_Int,
 Mem_Data_RD => M_Mem_Data_RD_Int,
 Mem_WR_Req => M_Mem_WR_Req_Int,
 Mem_RD_Req => M_Mem_RD_Req_Int,
 Mem_Done => M_Mem_Done_Int,

 -- Signals on/off Adapter
 M_BUS => M_BUS,
 --M_GRANT_IN_L => ; Used only when used as Slave
 M_DESIRE_IN_L => M_DESIRE_IN_L,
 M_GRANT_OUT => M_GRANT_OUT,
 --M_DESIRE_OUT_L ;--Used only when VPM used as Slave
 M_REQUEST_L => M_REQUEST_L,
 M_ACKNOWLEDGE_L => M_ACKNOWLEDGE_L,
 M_RESUME_L => M_RESUME_L,
 S_BUSY_L =>S_BUSY_L,
 M_BUSY_L =>M_BUSY_L,
 BUS_ERROR_L => BUS_ERROR_L,
 --Parity Bits
 LSB_PARITY => LSB_PARITY ,
 MSB_PARITY => MSB_PARITY ,
 ADRS_PARITY => ADRS_PARITY,
 CMD_PARITY => CMD_PARITY ,

195

 --Control Bits
 MSB_WRITE_L => MSB_WRITE_L ,
 LSB_WRITE_L => LSB_WRITE_L,
 THREE_TWO_DATA => THREE_TWO_DATA,
 IPL_WRITE => IPL_WRITE
);

 XBUS: xbus_controller
 generic map(FREQ => XFREQ)
 port map (
 Clk => Clk_Int,
 Rst => Rst_Int,
 -- Signals from Processor
 P_Command => P_Command_Int,
 P_Data_In => P_Data_In_Int,
 P_Data_Out => P_Data_Out_Int,
 --P_Page_0: --Page Register set 0
 P_Desire_L => P_Desire_L_Int,
 P_GRANT => P_GRANT_Int,

 -- Signals from Memory Arbitrator
 Mem_Addr => X_Mem_Addr_Int,
 Mem_Data_WR => X_Mem_Data_WR_Int,
 Mem_Data_RD => X_Mem_Data_RD_Int,
 Mem_WR_Req => X_Mem_WR_Req_Int,
 Mem_RD_Req => X_Mem_RD_Req_Int,
 Mem_Done => X_Mem_Done_Int,

 -- Signals on/off Adapter
 X_BUS => X_BUS,
 X_GRANT_OUT => X_GRANT_OUT,
 X_DESIRE_IN_L => X_DESIRE_IN,
 X_REQUEST_L => X_REQUEST_L,
 X_ACKNOWLEDGE_L => X_ACKNOWLEDGE_L,
 X_RESUME_L => X_RESUME_L,
 IPC_MODE_L => IPC_MODE

);

 SDRAM: sdramCntl
 generic map(
 FREQ => SD_FREQ,
 HADDR_WIDTH => SD_HADDR_WIDTH,
 SADDR_WIDTH => SD_SADDR_WIDTH
)

196

 port map (
 clkin => CLK,
 bufclk => SD_bufclk_Int,
 clk0 => Clk_Int,
 clk2x => SD_clk2x_Int,
 lock => SD_lock_Int,
 rst => Rst_Int,
 rd => SD_rd_Int,
 wr => SD_wr_Int,
 done => SD_done_Int,
 hAddr =>SD_hAddr_Int,
 hDIn => SD_hDIn_Int,
 hDout =>SD_hDOut_Int,
 sdramCntl_state => SD_sdramCntl_state_Int,
 -- SDRAM side
 sclkfb => sclkfb,
 sclk => sclk,
 sclk_tst => sclk_tst,
 cke => cke,
 cs_n => cs_n,
 ras_n => ras_n,
 cas_n => cas_n,
 we_n => we_n,
 ba => ba,
 sAddr => sAddr,
 sData => sData,
 dqmh => dqmh,
 dqml => dqml
);

end Adapter_Top_arch;

197

THIS PAGE INTENTIONALLY LEFT BLANK

198

LIST OF REFERENCES

1. Croskrey, M., Design Recovery and Rapid Prototyping of a Legacy Processor,
Masters Thesis, Naval Postgraduate School, Monterey, CA, September 2002

2. “Aging Avionics in Military Aircraft,” Committee on Aging Avionics in Military
Aircraft, Air Force Science and Technology Board, Division on Engineering and Physical
Sciences, National Research Council

3. Duren, Russ, “Options for Upgrading Legacy Avionics Systems,” Proceedings of
the 21st Digital Avionics Systems Conference, Irvine, CA, 27-31 October 2002

4. Datasegment.com.
http://onlinedictionary.datasegment.com/word/Design%20recovery/ December 8, 1996.

5. Doom, Travis, Formal Design Recovery for Obsolete Digital Systems, Power
Point Presentation, Write State University, Computer Science and Engineering

6. Chikofsky, E. and Cross II, J., Reverse Engineering and Design Recovery: A
Taxonomy, January, 1990

7. Kidd, Christopher , Masters Thesis, Naval Postgraduate School, Monterey, CA,
September 2002

8. Van den Bout, David, The Practical XILINX Designers Lab Book, Prentice_Hall,
Inc., 1999

9. Rajan, Sundar, Essential VHDL RTL Synthesis Done Right,Sundar Rajan and
Gennis Lafayette, 1999

10. Avnet Design Services, Virtex-E Development Kit Users Manual, Avnet Design
Services, 2001

11. Micron, 256Mb: x4, x8, x16 SDRAM Industrial Temp, Micron Technology Inc.,
2002

199

http://onlinedictionary.datasegment.com/word/Design recovery/

THIS PAGE INTENTIONALLY LEFT BLANK

200

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman and Distinguished Professor Max F. Platzer, Code AA/PL
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

4. Associate Professor Russell Duren, Code AA/DR
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, California

5. Professor Herschel Loomis, Code EC/LM
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Mr. Barry Douglas
NAWC-WD
F/A-18 Advanced Weapons Laboratory
China Lake, California

7. Dr. Ken Trieu
NAWC-WD
F/A-18 Advanced Weapons Laboratory
China Lake, California

8. Mr. Charles Bechtel
NAWC-WD
F/A-18 Advanced Weapons Laboratory
China Lake, California

9. Mr. Rex Coombs
PMA-209, Naval Air Systems Command
NAS Patuxent River, Maryland

201

10. Commander Rich Brasel
U. S. Naval Test Pilot School
Naval Air Warfare Center Aircraft Division
NAS Patuxent River, Maryland

202

	I.INTRODUCTION
	A.THE LEGACY AVIONICS ISSUE
	B.POTENTIAL SOLUTIONS TO THE LEGACY PROBLEM
	C.REENGINEERING
	D.PURPOSE OF STUDY

	II.DESIGN RECOVERY
	A.OVERVIEW OF REENGINEERING PROCESS
	B.OVERVIEW OF THE AYK-14
	1. History of the AYK-14
	2. Processor Subsystem
	3. Memory Subsystem
	4. Input / Output Subsystem
	5. Power Subsystem
	6. Chassis Subsystem

	C.AYK-14 CONFIGURATION ON THE F-18C/D
	D.VPM PROCESSOR
	E.ADAPTER
	F.EXTERNAL BUS OPERATION
	1. Standalone Mode MBUS Operation
	2. Standalone XBUS Operation

	G.EVENT SYSTEM
	1. Polled Event System
	a. 1st State: ESTATE = 01
	b. 2nd State: ESTATE = 10
	c. 3rd State: ESTATE = 11

	2. Direct Events

	H.INPUT / OUTPUT MODULE OPERATION
	1. I/O Channel Software
	2. I/O Channel Control Memory
	3. I/O Channel Chain Programs
	4. I/O Channel Software Interrupts
	5. I/O Channel Events
	6. I/O Channel Basic Operation

	I.DISCRETE AND SERIAL MODULE
	1. DSM Personalities and Modes
	2. Smart I/O Operation

	J.COMPUTER CONTROL UNIT

	III. DESIGN IMPLEMENTATION
	A.FORWARD ENGINEERING PROCESS
	1. Field Programmable Gate Array
	2. VHSIC Hardware Design Language (VHDL)
	3. FPGA Design Tools
	4. Finite State Machine Design
	5. Modular Approach to Overall Design

	B.TARGET FOR DESIGN IMPLMENTATION
	C.COMPONENT DESIGN DESCRIPTION
	1. SDRAM Controller
	2. Memory Arbitrator
	3. MBUS Controller
	4. XBUS Controller
	5. Event Bus Controller
	6. Top Level Design Interface

	IV. CONCLUSIONS
	APPENDIX A: DOCUMENTATION LIST FOR THE AYK-14
	APPENDIX B: DIRECT AND POLLED EVENTS
	APPENDIX C: I/O INSTRUCTIONS
	APPENDIX D: XBUS COMMAND WORDS
	APPENDIX E: VHDL SOURCE CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

